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Prefazione

Questo libro ¢ la raccolta e la rielaborazione delle lezioni da me tenute presso
I’Universita Sapienza di Roma nel corso di Analisi 2. Vuole essere un trattato
elementare della teoria delle serie di Fourier. E’ concepito come risorsa fonda-
mentale per studenti universitari e professionisti impegnati nelle discipline scien-
tifiche e ingegneristiche. Il testo e stato strutturato per fornire una comprensione
approfondita dei principi fondamentali, parallelamente a un’ampia sezione ded-
icata all’applicazione pratica tramite esercizi mirati. La prima parte del libro &
dedicata all’esposizione rigorosa dei concetti teorici essenziali. Ogni capitolo e
stato sviluppato con ’obiettivo di presentare la materia in modo chiaro e coer-
ente, privilegiando la derivazione logica e ’analisi critica dei modelli. Non ci si
¢ limitati alla mera enunciazione di formule o definizioni; al contrario, si ¢ cer-
cato di illuminare il “perché” dietro ogni principio, incoraggiando un approccio
analitico e sistematico. L’enfasi & posta sulla solidita concettuale, elemento in-
dispensabile per lo sviluppo di competenze risolutive robuste. La trattazione in-
clude dimostrazioni dettagliate e spiegazioni esaustive, accompagnate da esempi
risolti che illustrano ’applicazione diretta dei concetti teorici. Questa sezione
mira a costruire una base di conoscenza ferma, preparatoria per affrontare prob-
lematiche di crescente complessita. Il libro si presta a numerosi approfondimenti
proposti per mezzo di numerose appendici. La seconda parte del volume e inte-
gralmente dedicata alla pratica. Qui si trovera una vasta collezione di esercizi,
progettati per consolidare la comprensione teorica e sviluppare le capacita di
problem-solving. La selezione include un’ampia gamma di tipologie, dai prob-
lemi di verifica concettuale a quelli che richiedono l'integrazione di molteplici
principi. La risoluzione di questi esercizi € cruciale per la piena assimilazione
del materiale. Ogni problema e un’opportunita per applicare la teoria in con-
testi vari, aflinare il ragionamento critico e identificare le strategie risolutive
piu efficienti. La pratica costante con questi quesiti rafforzera la vostra abilita
nell’affrontare sfide analitiche e numeriche, trasformando la conoscenza astratta
in competenza operativa e applicata. Questo libro si propone dunque come uno
strumento indispensabile per chiunque desideri non solo acquisire conoscenza,
ma anche sviluppare una profonda capacita di applicazione pratica nel proprio
campo scientifico. L’equilibrio tra rigore teorico ed estensiva pratica rende questo
lavoro una risorsa completa per un percorso formativo e professionale.

S. C.

Roma, 10 Luglio 2025
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3 Secondo teorema di Dirichlet: prima parte

sulla sviluppabilita in serie di Fourier

3.1 Ipotesi

Sia f : I — R, I=(a,b) = (—7, ) una funzione periodica con periodo 27 tale che

1. f(x) sia continua e monotona a tratti in ogni intervallo finito I = [a, b]

2. f(x) abbia un numero finito di discontinuita di prima specie in un
periodo;

3. f(x) sia integrabile su un periodo, ovvero a variazione limitata, cioe:

/ﬂ |f(z)| dz < 0. (37)

-

4. f(x) sia regolare ovvero C! (che implica la continuita della derivata e
della funzione, cosa gia contenuta nel primo punto).

3.2 Tesi

La funzione f(x) & sviluppabile in una serie di Fourier della forma:

?0 + ; ap, cos(nz) + by, sin(nz)) , (38)

dove i coefficienti della serie di Fourier sono:

= %/_ﬂ f(z)dx, (39)

1 sy

an = — f(z)cos(nx)dx, n>1, (40)
by, = % i f(z)sin(nx)dz, n>1. (41)

-

Risulta inoltre:

a) La serie di Fourier converge puntualmente nell’intervallo aperto (—m, ),
ovvero in ogni punto interno dell’intervallo.

b) Nei punti di discontinuita della funzione, la serie di Fourier converge puntual-
mente al valore medio tra i limiti destro e sinistro. Ad esempio, se ¢ € (—m, )
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€ un punto di discontinuita, di prima specie, allora:

s(c) = % ( lim f(z)+ lim f@:)). (42)

T—c— r—ct

c) Per x = +m, cioé agli estremi dell’intervallo, la serie di Fourier converge
puntualmente a:

s(w)z%(lim f(@) + lim (@), (43)

=T =7t

e analogamente:

T—>—T

stom =5 (L m @)+ tim @) (44)

Inoltre in ogni intervallo [, 8] C (=, ) dove la funzione ¢ continua, la conver-
genza & anche uniforme.

4 Secondo Teorema di Dirichlet: seconda parte
sulla Convergenza Uniforme della serie di Fou-

rier

4.1 Ipotesi

Sia f(z) una funzione periodica di periodo 2, definita su [—m, 7], che soddisfa
le seguenti condizioni:

1. Continuita: f(z) e continua su [—m, 7).
2. Variazione limitata sia la funzione che la sua derivata: La derivata

generalizzata di f(x) & a variazione limitata su [—m, 7], cio¢ f(z) ha una
variazione limitata su [—, 7).

3. Somme parziali uniformemente limitate: Le somme parziali della
serie di Fourier Sy (z) associate a f(x) sono uniformemente limitate, cioe
esiste una costante C' tale che |Sy(x)]
< C per ogni N e per ogni x € R.

4.2 Tesi

Allora, la serie di Fourier di f(x) converge uniformemente a f(z) su R. Si fa
notare che anche qui la condizione di convergenza uniforme e solo sufliciente.
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4.3 Dimostrazione

Passo 1: Scrittura della Serie di Fourier e delle Somme Parziali
La serie di Fourier di f(x) ¢ data dalla somma:

N
+ Z an cos(nzx) + by, sin(nx)) , (45)

n=1

7_0
SN _2

dove i coefficienti a,, e b, sono definiti come:
1 (7 1 (7
an = — f(z)cos(nx)dx, b, = —/ f(z) sin(nx) dz. (46)
-7

Passo 2: Utilizzo del Nucleo di Dirichlet
Definiamo il nucleo di Dirichlet come:

N N
= Z cos(nz) +1 Z Sin(nl‘). (47)
n=0 n=1

Si puo notare inoltre che essendo:

N

Dy(z) = Z (cos(nz) + isin(nx) Z e (48)
n=0 n=—N
Tenendo conto che sin(—nz) = —sin(nz), si ha che la somma:

n

> sin(ka) = 0. (49)

k=—n
Quindi, il nucleo di Dirichlet D, (z) & uguale a:

N
Dy(z)=1+2 Z cos(nz). (50)

n=1

Se f(z) ¢ una funzione 2m-periodica e integrabile, allora la somma parziale di
ordine N della serie di Fourier puo essere scritta come una convoluzione

Sw(fr)= = [ f(e—t) Dy(t)dr, (51)

2 J_,
dove Dy(z) & il nucleo di Dirichlet. Questo ci dice che la somma parziale &

un’approssimazione di f ottenuta smussando f tramite Dy (z). Il comporta-
mento di Dy (z) € cruciale per capire dove e come la serie di Fourier converge.
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In particolare, nei punti di continuita converge a f(x), nei punti di discontinuita
di prima specie converge alla media dei limiti laterali. Se Dy (x) non & somma-
bile, la somma cresce come log(N). Questo rende piu difficile la convergenza.
L’oscillazione del nucleo di Dirichlet vicino ai punti di discontinuita diventa pit
pronunciata man mano che ci si avvicina ad essio. L’oscillazione del nucleo di
Dirichlet vicino ai punti di discontinuita spiega il fenomeno di Gibbs.
La somma parziale puo essere scritta come una convoluzione di f(z) con il nucleo
di Dirichlet: s

Sn(z)=— [ fy)Dn(x—y)dy. (52)

—T

Passo 3: Proprieta delle Funzioni a Variazione Limitata Poiché f(z) ¢
a variazione limitata su [—m, 7], possiamo utilizzare il fatto che la funzione f(x)
¢ continua e a tratti monotona (segnalando che le sue derivate esistono quasi
ovunque e che la variazione totale di f(x) e finita). Di conseguenza, i coefficienti
di Fourier a,, e b,, decrescono almeno come %
Passo 4: Stima dell’Errore di Convergenza
Per dimostrare la convergenza uniforme, consideriamo la differenza tra la somma
parziale Sy (z) e la funzione f(z):

Sw(e) ~ 1) = [ F@)Dx(—y)dy — 1), (58)

—T

Per Dy (z), possiamo stimare che:

| [ r)Dxta =) dy| < V() 4

dove V(f) ¢ la variazione totale di f(x) su [-m, 7] e C' ¢ una costante indipen-
dente da N.

Passo 5: Convergenza Uniforme

Poiché f(z) e a variazione limitata, 'errore |Sy(z) — f(z)| tende a zero uni-
formemente per z quando N — oo. In altre parole, il massimo errore tra la
somma parziale Sy (z) e la funzione f(x) tende a zero man mano che N cresce:

sup |Sy(z) — f(z)] = 0 quando N — oo. (55)

Conclusione

Poiché il massimo errore tende a zero, la serie di Fourier di f(z) converge uni-
formemente a f(z) su R, come richiesto. Pertanto, abbiamo dimostrato che la
serie di Fourier di una funzione continua, a tratti monotona e regolare a tratti
converge uniformemente alla funzione stessa.
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