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Prefazione 

 

Nelle scienze sperimentali, e in particolare nella fisica, un ruolo chiave è giocato dalla 

realizzazione di esperimenti che prevedono la progettazione, la costruzione, 

l’approntamento e/o l’assembiamento di dispositivi sperimentali e, successivamente, 

l’acquisizione e l’analisi di dati con il fine di formulare semplici modelli interpretativi 

e/o teorie, o ancora di suffragarle o falsificarle.  

Infatti, ancorché modelli e teorie costituiscano un prodotto dell’intelletto umano, nei casi 

concreti risulta limitativo ridurre la costruzione della conoscenza del reale alla sola 

speculazione teorica, e ciò in ragione del fatto che modelli interpretativi e teorie spesso 

richiedono un riscontro con i dati sperimentali. Sotto questa luce, gli esperimenti, se 

progettati propriamente, sono in grado non soltanto di testare la validità o inficiare un 

modello interpretativo o una teoria ma, ed è questo il caso che più importa per gli scopi 

di questo volume, di favorire la comprensione di concetti che possono apparire astratti 

e/o risultare di non facile comprensione proprio perché non opportunamente 

contestualizzati sul fronte dell’esperienza.  

In questo quadro di riferimento, nell’insegnamento di alcuni temi comuni alla fisica e 

alla matematica, le attività di laboratorio in generale, e gli esperimenti di fisica in 

particolare, possono svolgere non soltanto la funzione di verifica, falsificazione o 

formulazione delle leggi fisiche, ma anche la funzione di favorire la comprensione di 

concetti e leggi, ancor più se sono di pertinenza di discipline diverse, come la fisica e la 

matematica.  

In particolare, negli ultimi decenni si è sviluppata una didattica integrata della fisica e 

della matematica sostanzialmente fondata da un lato sull’idea che la conoscenza 

individuale, così come ogni altra conoscenza che possa qualificarsi come accreditata, si 

costruisca mediante una continua strutturazione e ristrutturazione di concetti che passa 

attraverso connessioni tra ambiti differenti e, dall’altro, sull’idea che l’apprendimento 

sia un processo dinamico nel quale, a partire da una conoscenza riconducibile al senso 

comune, si sviluppano modi di interpretare sempre più vicini a quelli che caratterizzano 

un approccio scientifico interdisciplinare. Ed è in questo contesto che gli esperimenti di 

fisica acquisiscono un valore aggiunto per lo studente in quanto gli permettono di 

sperimentare percorsi integrati di studio, di avviare riflessioni su temi comuni alla fisica 
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e alla matematica, di costruire modelli interpretativi validi in differenti contesti mediante 

un processo di ristrutturazione e integrazione delle proprie conoscenze.  

Il fare esperienza, attività che in alcuni casi può, sia pure semplicisticamente, essere 

connotata come “spontanea”, differisce profondamente dal fare esperimenti. Il condurre 

esperimenti è, in molti casi, un’attività progettata, “artificiale”, che richiede il dover 

ordinare, progettare e realizzare una serie di attività coordinate che sono finalizzate ad 

ottenere informazioni rilevanti dall’esperimento stesso. Questa distinzione tra esperienza 

ed esperimento trova un riscontro, oltre che tra i differenti livelli educativi, anche nella 

storia delle scienze. Si potrebbe dire, ad esempio, che mentre la fisica ellenistica o greca 

sono, in misura prevalente, focalizzate sul fare esperienza, ovvero su un rapporto diretto 

con l’osservazione del mondo naturale, da Leonardo e da Galileo in poi il progresso 

scientifico è contraddistinto dal progettare e realizzare esperimenti, ovvero dall’eseguire 

operazioni, spesso articolate e complesse, che richiedono interconnessioni e 

collegamenti tra differenti fenomeni, conoscenze e saperi; potremmo dire che non è la 

scienza a nascere con Leonardo e Galileo ma piuttosto la scienza degli esperimenti.  

Dal punto di vista dell’insegnamento e dell’apprendimento una delle questioni più 

interessanti da affrontare riguarda le caratteristiche che gli esperimenti di fisica devono 

avere per favorire l’apprendimento di concetti comuni alla fisica e alla matematica. La 

questione posta è rilevante in quanto alcuni esperimenti di fisica, se opportunamente 

congegnati, possono rilevarsi efficaci per facilitare la comprensione di contenuti, 

specifici o in alcuni casi reputati ostici, comuni alla fisica e alla matematica. Sotto questa 

prospettiva, le connessioni palesemente esistenti, o semplicemente rintracciabili, fra 

fisica e matematica possono essere spesso evidenziate attraverso la realizzazione di 

esperimenti di fisica in linea con il motto “Se faccio capisco”; in altri termini, spesso, 

può essere efficace partire dagli esperimenti di fisica per una migliore e/o facilitata 

comprensione di concetti della fisica e della matematica. 

Al riguardo si può fare riferimento al genio assoluto di Archimede di Siracusa e 

all’importanza che egli diede all’intuizione fisica al punto tale che egli usò le leggi della 

meccanica per scoprire alcune leggi della geometria. Per esempio, Archimede determinò 

il volume della sfera immaginando di dover equilibrare il peso di un oggetto sferico e il 

peso di un oggetto cilindrico posti su piatti opposti di una bilancia; si potrebbe dire che, 

in ragione dell’approccio impiegato, questo risultato geometrico può essere considerato 



 v 

un risultato della meccanica. Un altro esempio, relativo all’approccio impiegato da 

Archimede, è dato dal calcolo dell’area di un segmento di parabola, riportato nel 

Metodo, che si basa sull’applicazione del principio della leva e che costituisce un 

esempio di quel dominio della materia sulla mente considerato da molti storici un 

esempio di come la fisica possa essere applicata per la determinazione di leggi 

matematiche. Di converso, il procedimento per trovare il baricentro di un triangolo, 

riportato nel trattato Sull’equilibrio dei piani, costituisce un esempio di dominio della 

mente sulla materia dove non viene richiesta la realizzazione di un esperimento per 

giungere alla tesi e, pertanto, quest’ultimo svolge la funzione di verifica o falsificazione. 

L'assunto di base di questo volume è che nell'insegnamento e nell'apprendimento di 

alcuni concetti comuni alla matematica e della fisica, le profonde affinità 

epistemologiche, le connessioni esistenti tra le due discipline e le correlazioni con le 

attività di laboratorio di fisica debbano essere promosse. In questo quadro di riferimento, 

la matematica non fornisce soltanto strumenti per la fisica, ma guida anche la 

comprensione fisica; viceversa la fisica e gli esperimenti di fisica possono fornire un 

semplice accesso ad argomenti matematici di non immediata comprensione. Recenti 

indagini sull'apprendimento degli studenti suggeriscono che la comprensione di 

argomenti di Fisica e Matematica può essere notevolmente facilitata mediante un 

approccio integrato (vedi Fig. 1) con le attività di laboratorio.  

 

 

 

 

 

 

 

 

 

 

 

 

Figura 1: Schema rappresentante le scienze sperimentali 
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In altre parole, nei corsi di laurea in fisica e matematica, discipline come la fisica e la 

matematica sono frequentemente impostate in modo autonomo attraverso la 

delimitazione dei confini, la costruzione di linguaggi specialistici e l'impiego di tecniche 

e strumenti specifici; ancorché questo approccio fornisca punti di forza alle singole 

discipline, allo stesso tempo può limitarne l’accessibilità. Le discipline sono finestre di 

osservazione sul mondo, punti di vista sulla realtà, ma se le discipline dimenticano di far 

parte di un più ampio sistema di conoscenza i limiti di confine interdisciplinare diventano 

barriere. Un approccio integrato permette di far fronte anche ad alcune delle criticità 

delle attuali tipologie di insegnamento che sono riconducibili a impressive figure 

metaforiche. Tra queste si può ricordare la metafora dell’Imbuto di Norimberga, 

denominazione che trae origine da un’incisione su legno del XVII secolo, secondo cui la 

conoscenza è concepita come qualcosa che alcuni possiedono e altri no e che i primi 

possono «versare come con un imbuto» nella mente dei secondi.   

Un’altra metafora che spesso viene presa come riferimento è quella della Scatola Nera 

dove sono presenti tre riferimenti: l’input che è assimilato all’attività svolta dal docente, 

la scatola nera che rappresenta il discente, e di cui non si hanno né si cercano 

informazioni, e l’output che fa riferimento alle sue risposte; secondo questa 

modellizzazione, dunque, non importa la struttura interna della scatola, e dunque i 

processi di costruzione critica e di collegamento delle conoscenze da parte dello studente, 

ma soltanto gli input e gli output, come schematizzato in Figura 3. 

 

Figura 3: Schema della Scatola Nera dove vengono riportati l’input che è assimilato 

all’attività svolta dal docente, la scatola nera che rappresenta il discente, e di cui non si 

hanno né si cercano informazioni, e l’output che fa riferimento alle sue risposte. 

 

Infine, preme ricordare che tra gli approcci didattici emergenti nell’insegnamento delle 

scienze, e piu’ specificamente della fisica, un interesse sempre crescente viene attribuito 

all’approccio storico in quanto questo permette di mettere in evidenza i processi di 
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evoluzione delle conoscenze scientifiche, e di riflesso quelli di formazione della 

razionalità moderna; inoltre l’approccio storico permette  di proporre i contenuti non 

come già perfettamente costruiti e compiuti. L'introduzione di un approccio storico 

facilita l'apprendimento scientifico, sia come elemento motivante per gli studenti che 

come facilitatore dell'apprendimento.  

 

 

Messina, 28 Luglio 2021 

 

Professoressa Maria Teresa Caccamo; Professore Salvatore Magazù 
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4. Il pendolo conico a lunghezza variabile. 

 

 
Caccamo Maria Teresa, Magazù Salvatore 
 

 

4.1 Sezione teorica. 

 

Un pendolo conico è costituito da un filo inestensibile di massa trascurabile a cui è appesa 

una massa che, sotto l'azione della forza gravità, si muove con una velocità tangenziale 

iniziale ortogonale alla direzione della forza di gravità. Quando gli attriti connessi sia al 

vincolo di sospensione sia alla viscosità del mezzo in cui è immerso il pendolo possono 

ritenersi trascurabili, la massa compie un moto rotatorio su un piano orizzontale con una 

velocità lineare costante in modulo. In queste condizioni, in assenza di dissipazione di 

energia, se la lunghezza del pendolo è costante nel tempo, la massa ruota seguendo una 

traiettoria circolare mentre il sistema massa-filo descrive una superficie conica . In questo 

caso, il moto del pendolo conico proiettato lungo un qualsivoglia piano verticale da luogo 

a una oscillazione sinusoidale caratterizzata da una velocità angolare costante la cui 

trasformata di Fourier fornisce un picco centrato alla frequenza angolare del moto 

(Caccamo et al. 2017, Patterson 1952).  

Quando la lunghezza del filo del pendolo conico diminuisce in funzione del tempo, la 

frequenza del moto aumenta dando luogo ad un comportamento, per la proiezione lungo 

un piano verticale, descrivibile con una funzione “chipir”. In questo caso, come vedremo, 

per seguire l'evoluzione nel tempo della frequenza del pendolo, può convenientemente 

essere applicato un approccio wavelet. 

In Figura 1 è riportata la decomposizione delle forze per un pendolo conico. 
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 Figura 4.1. Decomposizione delle forza per il pendolo conico  

 

Dal punto di vista teorico, quando la lunghezza della fune a cui è appeso il pendolo conico 

non varia, è possibile descrivere il movimento conico lungo due assi ortogonali (Delgado 

2010, Patterson 1952, Delgado et al. 2010, Akulenko et al. 2009, Feynman 1963, Tiersten 

1969). 

In particolare, per l'asse y, si ha: 

!! " #$%& ' () (4.1) 

mentre per l'asse x, si ha: 

!! " %*+& ' (,"-  (4.2) 

Poiché  - ' . " %*+&/ 0 //%*+& ' #

$
 , per la componente lungo l'asse x si ha:  

!! ' ( " ,"- " %*+& ' ( " ,"- " .- ' ( " ,".-"  

 

(4.3) 

Ed essendo /, ' 1 " -/ 0 /," ' 1" " -" si ha #$%& ' %

$&'!
, e quindi: 



Capitolo 4 – Il pendolo conico a lunghezza variabile                                       23 

 

1 ' 2 ). " #$%& 

 

(4.4) 

Pertanto, in queste condizioni, il periodo di rotazione risulta: 

3 ' 451 0 //3 ' 45 " 6. " #$%&)  

(4.5) 

Consideriamo ora il caso in cui la lunghezza del pendolo conico sia variabile. 

Introducendo la quantità %789 per lo spostamento lineare del pendolo, per una rotazione 

angolare di :789 su un piano ortogonale all'asse y, si ha : 

%789 ' -789 " :789 ' .789%*+&789 " :789 (4.6) 

Ora, assumendo che:  

i) la velocità di variazione della lunghezza del pendolo, 
($

()
,  sia constante, e 

che pertanto 
(!$

()!
/sia uguale a 0; 

ii)  
($

()
 e 
(*

()
  siano piccoli rispetto a 

(θ

(+)

;
 , ovvero rispetto alla velocità di rotazione 

del pendolo sul piano ortogonale all'asse y, 

si può esprimere l’ampiezza normalizzata del moto proiettato lungo un arbitrario piano 

verticale come una funzione sinusoidale caratterizzata da una velocità angolare variabile: 

<789 ' %789=789 ' %>+718 ? @9 (4.7) 

dove/=789 rappresenta l'ampiezza del moto, 18 ? @ è la fase del moto e @ è la fase 

iniziale. 

Assumeremo, inoltre, che la velocità angolare vari linearmente nel tempo:  

1 ' 1, ? A8 (4.8) 

dove 1, è la pulsazione iniziale e A/è l'accelerazione angolare.  

In Figura 2 è riportata una rappresentazione di un pendolo conico di lunghezza variabile  
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Figura 2. Pendolo conico di lunghezza variabile 

 

 

4.2 Configurazione sperimentale e risultati. 

 

Il dispositivo sperimentale comprende: 

• una corda lunga 3 m; 

• una massa oscillante il cui peso è 75,14 g; 

• un supporto per fissare il pendolo; 

• un dispositivo rotante per modificare la lunghezza del pendolo; 

• un computer dotato di programma di acquisizione dati video e software Matlab-

Simulink, Image Processing Toolbox e Computer Vision Toolbox. 

Per quanto attiene l’esecuzione dell’esperimento, questo è stato condotto in tre fasi 

distinte durante le quali il periodo è stato valutato con semplice calcolo, tenendo conto 

delle diverse oscillazioni stazionarie e, infine, in modo dinamico diminuendo la 

lunghezza del pendolo. In tutti e tre i casi è stata applicata alla massa di 75,19g una forza 

F tangenziale alla circonferenza. 
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In particolare, nella prima fase sperimentale, una volta stabilito il raggio delle 

circonferenze descritte dal pendolo, si può valutare la tangente dell'angolo tra la posizione 

di equilibrio statico del pendolo e la traiettoria di equilibrio dinamico; dalla tangente è 

quindi possibile estrarre il coseno dell’angolo che permette di determinare il periodo 

mediante la formula//3 ' 45 " 2-&./0*

%
.  

Per quanto riguarda la fase di moto stazionario, l'esperimento è stato eseguito misurando 

il periodo mediante più cronometri, tenendo conto di più oscillazioni al fine di ottenere 

una precisione più elevata.  

La tabella 1 mostra i valori registrati durante i due casi: 

 

B (m) 

±0,001 

R(m) 

±0,001 

CDEF GHIF Tvalutato  (s) Tsperimentale(s) 

±0,01 

 

2,870 

0,410 0,145 0,990 3,391 3,410 

0,492 0,175 0,987 3,381 3,450 

0,490 0,174 0,985 3,382 3,450 

 

2,770 

0,498 0,180 0,986 3,321 3,370 

0,505 0,185 0,984 3,318 3,350 

0,508 0,181 0,984 3,319 3,380 

 

2,570 

0,507 0,195 0,981 3,190 3,150 

0,520 0,205 0,981 3,899 3,230 

0,538 0,207 0,979 3,187 3,210 

 

2,370 

0,445 0,185 0,984 3,069 3,020 

0,470 0,200 0,982 3,066 3,180 

0,505 0,210 0,979 3,063 3,080 

 

2,170 

0,440 0,200 0,981 0,935 2,890 

0,475 0,224 0,975 0,927 3,030 

0,480 0,217 0,974 2,928 2,960 

 

1,970 

0,420 0,210 0,978 2,794 2,760 

0,430 0,216 0,976 2,793 2,780 

0,450 0,206 0,981 2,795 2,840 
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1,770 

0,375 0,207 0,978 2,647 2,770 

0,385 0,215 0,977 2,646 2,670 

0,410 0,227 0,976 2,644 2,720 

 

1,370 

0,380 0,275 0,966 2,316 2,310 

0,395 0,290 0,960 2,307 2,720 

0,480 0,346 0,946 2,292 2,410 

 

0,970 

0,155 0,156 0,984 1,975 1,970 

0,300 0,304 0,958 1,944 20,10 

0,345 0,347 0,945 1,928 2,030 

 

0,870 

0,255 0,287 0,960 1,846 1,960 

0,275 0,304 0,956 1,840 1,870 

0,280 0,315 0,953 1,839 1,950 

 

0,770 

0,260 0,328 0,951 1,728 1,760 

0,270 0,343 0,916 1,724 1,770 

0,285 0,363 0,940 1,718 1,850 

 

0,670 

0,130 0,186 0,848 1,524 1,810 

0,165 0,239 0,974 1,633 1,830 

0,455 0,111 0,995 1,650 1,820 

 

0,570 

0,125 0,208 0,979 1,512 1,650 

0,135 0,216 0,979 1,511 1,620 

0,175 0,295 0,955 1,495 1,690 

 

Tabella 4.1. Lunghezza del pendolo .,  raggio R, /
8J+ &, #$% &, periodo T valutato da un semplice calcolo  (Tvalutato (s)); periodo valutato 

tenendo conto di più oscillazioni (Tsperimentale(s)). 

 

Come mostrato in tabella, sono state eseguite tre diverse misurazioni, una per ciascuna 

lunghezza della fune. I dati ottenuti utilizzando l'approccio stazionario sono riportati in 

figura 4.3: 
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Figura 3. Dati ottenuti utilizzando l'approccio stazionario. 
 

Infine, nel terzo caso, dinamico, la lunghezza del pendolo viene fatta variare secondo 

l'equazione: 

. ' ., ?/K1 " 7L" M L29 (4.9) 

con  K1 ' MNOPQPR S NONNNP. 

La figura 4 mostra la dipendenza dal tempo della lunghezza del pendolo, che risulta 

variare nell’intervallo da 2,240 m a 0,472 m. 
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Figura 4.4. Dipendenza dal tempo della lunghezza del pendolo variabile da 2,240 m a 

0,472 m. /In particolare, /. ' ., ?/,3 " 78" M 829O/con ,3 ' MNOPQPR S NONNNP. 

 

I parametri del moto, riportati in tabella 2, sono stati valutati utilizzando un valore di 

raggio iniziale di - ' NO4/(, attraverso due diverse metodologie: 

T (s) . (m) U (s) 

  7,74 ± 0,01 2,240 ± 0,001 3,18 ± 0,01 

  10,60 ± 0,01 1,772 ± 0,001 2,93 ± 0,01 

13,22 ± 0,01 1,352 ± 0,001 2,55 ± 0,01 

  15,60 ± 0,01 0,971 ± 0,001 2,08 ± 0,01 

17,09 ± 0,01 0,723 ± 0,001 1,79 ± 0,01 

18,66 ± 0,01 0,472 ± 0,001 1,57 ± 0,01 

Tabella 4.2: Parametri del moto, ovvero tempo, lunghezza e periodo del pendolo, ottenuti 

utilizzando un valore di raggio iniziale di - ' NO4/(. 
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La figura 4.5 mostra il comportamento della pulsazione angolare in funzione del tempo. 

 

Figura 5. Dipendenza dal tempo della pulsazione del pendolo. 

 

Il movimento è stato registrato tramite il programma di acquisizione dati video (con un 

software Matlab-Simulink, ovvero Image Processing Toolbox e Computer Vision 

Toolbox) posto nella parte inferiore del pendolo sospeso. 

In Figura  4.6 è riportato il segnale registrato insieme ai suoi spettri FT e WT. In 

particolare, nella parte superiore della figura viene riportato il segnale registrato nella 

condizione di lunghezza variabile; a destra della figura la sua FT, la quale mostra solo 

una media delle frequenze del segnale registrato; in basso nella figura viene riportato lo 

scalogramma WT del segnale il quale mostra in dettaglio come la pseudo-frequenza di 

oscillazione cambia nel tempo (Caccamo et al. 2018) 
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Figura 6. Confronto del segnale registrato analizzato mediante FT e WT. In alto nella 

figura il segnale di oscillazione registrato in condizioni di lunghezza variabile; a destra 

della figura la sua FT che mostra solo una media delle frequenze del segnale registrato; 

in basso nella figura lo scalogramma WT che mostra come la pseudo-frequenza di 

oscillazione cambia nel tempo. 

 

4.3 Conclusioni. 

 

In conclusione, nella presente esperienza viene trattato un pendolo conico in cui la sua 

lunghezza diminuisce in funzione del tempo. Per seguire l'evoluzione del tempo della 

frequenza del pendolo, viene applicato un approccio wavelet. Più specificamente, viene 

eseguito un confronto tra FT e WT. I due approcci mettono in evidenza gli effetti della 

variazione della lunghezza del pendolo sulla frequenza di oscillazione. Risulta 

chiaramente che WT fornisce una semplice analisi tempo-frequenza simultanea. 

 






