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Premessa

Il volume si rivolge a coloro che devono prepararsi ai concorsi per 1’accesso ai corsi
per Ufficiale del ruolo normale dell’ Accademia dell’ Arma dei Carabinieri.

11 testo tratta la fase della prova orale di Matematica.

Nelle prime pagine sono fornite indicazioni sulla figura professionale dell’ Ufficiale,
sulle prove che ciascun concorrente dovra affrontare partecipando al concorso.
Nelle Parte Seconda, il volume sviluppa, argomento per argomento, il programma
della prova orale per tesi di Matematica, come previsto dal bando di concorso.

Il contenuto di questo volume ¢, quindi, completo ed esaustivo per la preparazione
alla prova orale di Matematica per 1’accesso ai corsi per Ufficiale del ruolo normale
dell’ Accademia dell’ Arma dei Carabinieri.

Gli autori, infatti, si sono impegnati a sviluppare il programma d’esame nel modo piu
pertinente possibile alle richieste delle Amministrazioni, Militari e di Polizia, e a pre-
sentarlo nelle forme pill semplici per I’apprendimento; inoltre, hanno arricchito i con-
tenuti inserendo delle rubriche che puntano direttamente alle nozioni che interessa-
no i candidati.

L’ obiettivo & quello di fornire, ai concorrenti che desiderano intraprendere una car-
riera in divisa, strumenti particolarmente efficaci per raggiungere una preparazione
ottimale e poter affrontare le prove selettive di ciascun concorso con I’adeguata sere-
nita, sicuri di aver studiato in modo incisivo gli specifici argomenti richiesti.

Per una preparazione completa di tutte le fasi del concorso per 1’accesso all’ Accade-
mia dell’ Arma dei Carabinieri, si consigliano, inoltre, i volumi:

— Concorso Accademia Carabinieri — Teoria e test per preselezione, prova scritta di
lingua italiana e prova di lingua inglese (CC 1.1)

— Concorso Accademia Militare Arma dei Carabinieri — Prova orale di Storia, Costi-
tuzione e cittadinanza italiana, Geografia (CC 1.3)

— Concorso Arma dei Carabinieri — Prove di efficienza fisica, accertamenti psico-
fisici e accertamenti attitudinali (CC 4.0).
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Ulteriori materiali didattici, simulazioni di prove e aggiornamenti sono di-
sponibili nell’area riservata a cui si accede mediante la registrazione al sito edi-
ses.it secondo la procedura indicata nel frontespizio del volume.

Eventuali errata-corrige saranno pubblicati sul sito edises.it, nell’apposita sezio-
ne “Aggiornamenti” della scheda prodotto.

Altri aggiornamenti saranno disponibili sui nostri profili social.
Facebook.com/infoConcorsi

Clicca su |ﬁ (Facebook) per ricevere gli aggiornamenti
blog.edises.it


https://ses.it/
https://edises.it/
https://blog.edises.it/
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Capitolo 12

Trigonometria

12.1 DEFINIZIONE

Per trigonometria intendiamo quell’insieme di regole e formule che consentono di determi-

nare alcuni degli elementi (angoli e/o lati) di un triangolo qualsiasi, noti gli altri.

Dai criteri di congruenza dei triangoli sappiamo che ¢ possibile replicare un triangolo rispet-

to ad un altro se sono noti tre elementi su sei di questo; nei triangoli esistono quindi relazio-

ni tra le misure degli angoli e dei lati che consentono di calcolare gli elementi incogniti a par-

tire da quelli noti ed i relativi procedimenti prendono il nome di risoluzione dei triangoli.

Per individuare in modo univoco un triangolo distinguiamo tre diversi casi a seconda degli

elementi noti:

— risoluzione a partire dalla conoscenza di due lati e I’angolo compreso (dal 1° criterio di
congruenza);

— risoluzione a partire dalla conoscenza di un lato e degli angoli ad esso adiacenti (2° criterio);

— risoluzione a partire dalla conoscenza dei tre lati (3° criterio).

Nei triangoli rettangoli la misura di un angolo € nota a priori; sono quindi sufficienti due soli
elementi noti:

— due cateti;

— un cateto e I’ipotenusa;

— T’ipotenusa ed un angolo acuto;

— un cateto ed un angolo acuto.

12.2 RELAZIONI TRA GLI ELEMENTI DI UN TRIANGOLO RETTANGOLO

Alla luce di quanto visto a proposito delle funzioni gonio- y A
metriche consideriamo la porzione di circonferenza gonio-
metrica racchiusa nel primo quadrante (fig. 1).

Indicato con ABC un triangolo rettangolo in C, siano a, b
e ¢ le misure dei lati rispettivamente opposti ai vertici A,
BeC. ¢ P
Siano inoltre o e B gli angoli relativi ai vertici A e B del a
triangolo ABC.

Abbiamo visto che le definizioni delle funzioni goniome-
triche di un angolo orientato non dipendono dal raggio del-
la circonferenza goniometrica. fig. 1
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Pertanto assunto come raggio della circonferenza I’ipotenusa AB del triangolo, dalle defini-

zioni di seno, coseno e tangente, ricaviamo:
a

sent = —
c

b
cosaL = —
c

tgo = <
8=y

Da tali definizioni si possono ricavare agevolmente i cateti del triangolo in funzione dell’an-
golo a e dell’ipotenusa, poiché:

a = cseno.
b = ccosal (@)
a = btgo.

Inoltre, essendo la somma degli angoli interni di un triangolo 180°, ne consegue che 3 ¢ il
complementare di o, essendo ABC rettangolo, cioe:

B=90°-a
ricordando pertanto le formule degli angoli associati abbiamo:

senat = sen(90° - B) = cosp
cosa. = cos(90°— ) = senf}
tgo. = tg(90° - B) = ctgf

e sostituendo nelle (*) otteniamo le espressioni dei cateti del triangolo rettangolo ABC in fun-
zione dell’angolo f:

a = ccosf
b = csenf} (%)
a = bctgP < b = atgP

Queste relazioni ci permettono di risolvere i triangoli rettangoli come vedremo nei paragrafi
successivi quando affronteremo i problemi della trigonometria.

12.3 RISOLUZIONE DEI TRIANGOLI RETTANGOLI
Per la risoluzione di un triangolo rettangolo dobbiamo fare riferimento a quanto detto a pro-
posito delle relazioni tra i suoi elementi.

La risoluzione del triangolo rettangolo in trigonometria prevede quattro casi che andremo a
schematizzare tenendo conto della figura 2.
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I quattro casi sono:

I catetibe c ipotenusa a ed angoli B e y
II ipotenusa a e cateto b cateto c ed angoli B ey
I cateto b ed angolo 3 ipotenusa a, cateto ¢ ed angolo y
v ipotenusa a ed angolo cateti b e ¢ ed angolo y
I Caso

Ricordiamo che nel triangolo rettangolo g3 = —; da cio ricaviamo immediatamente 1’ango-
. b
lo B attraverso la formula inversa = arctg(—) .
c

Adesso y lo ricaviamo tenendo conto che la somma degli angoli interni di un triangolo ¢ 180°;
essendo o = 90°:
y=180°-a - =180°-90°-PB=90°-f

Per avere infine il valore dell’ipotenusa a, ricordiamo che b = a senf} e quindi: @ = b / senp.

II Caso

b - b
Dalla formula b = a senf, otteniamo senf3 = — e quindi f= arcsen(—) .
a a

L’angolo v si ricava in modo analogo al I caso cioe y =90° - 3 .
Infine, per avere il cateto ¢ ricordiamo la formula: ¢ = a seny.

IIT Caso b
L’angolo vy si ricava in modo analogo al I caso cioe y = 90° — f3; inoltre, essendo tg = —, ri-
¢

b
sultac= —.
tef3

Infine, sapendo che b = a senf, si ricava agevolmente: a =

b
senf’
IV Caso
L’angolo v si ricava in modo analogo al I caso cioe y = 90° — B, inoltre » = a senf ed infine
¢ =acosf.
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12.4 RELAZIONI TRA GLI ELEMENTI DI UN TRIANGOLO QUALUNQUE

Teorema dei seni
In un triangolo qualunque i lati sono proporzionali ai seni degli angoli ad essi opposti.

Nel triangolo acutangolo di vertici ABC di
figura 3, I’altezza ﬁ, relativa al lato ﬁ,
individua su BC il piede H, dividendo il
triangolo in due triangoli rettangoli, AHB
e AHC.

Se indichiamo con h il segmento AH, per
tali triangoli potremo scrivere le relazioni
seguenti:

per il triangolo AHB h=csenf
per il triangolo AHC h =b seny
per la proprieta transitiva sara: csenB=bseny
ovvero: —~— = b .
seny senf

E possibile ripetere lo stesso procedimento con gli altri vertici, ad esempio con il vertice B

per il quale avremo:
a

. c
csena=aseny dacuii ——=
seny  seno.

di nuovo per la transitivita delle uguaglianze avremo:

C b a

seny senf3 sena

Anche se avessimo considerato un triangolo ottusangolo saremmo giunti alle stesse identiche
conclusioni potendo scrivere per gli stessi triangoli rettangoli AHB ed AHC (vedi fig. 4):
per il triangolo AHB h =csenf

per il triangolo AHC h =b sen(nt —y) = b seny
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Proprieta: in un triangolo il rapporto tra ogni lato ed il seno dell’angolo ad esso opposto &
costante ed ¢ uguale al diametro della circonferenza circoscritta al triangolo stesso.

Come dafig. 5 consideriamo il triangolo di vertici ABC
inscritto nella circonferenza di diametro 2r dove an-
diamo ad inscrivere anche un triangolo di vertici ADC
che condivide quindi con ABC i due vertici A e C ed
ha un lato coincidente con il diametro AD = 2r della
circonferenza. Tale triangolo ¢ necessariamente ret-
tangolo in C ed ha I’angolo in D congruente con I’an-
golo in B del triangolo dato perché gli angoli alla cir-
conferenza B e Dinsistono sulla stessa corda AC = b;
per il triangolo rettangolo il teorema dei seni fornisce
la seguente relazione:

=2r

AC=ADsenf ovvero:
senf3

Definizione: dato un angolo, definiamo proiezione di uno dei lati sul secondo lato dell’ango-
lo il prodotto della misura dei lati per il coseno dell’angolo stesso.

Il teorema delle proiezioni ed il teorema di Carnot o del coseno
In un triangolo qualunque, ogni lato & uguale alla somma delle proiezioni degli altri due lati
su di esso.

Con riferimento ai triangoli rettangoli AHB ed AHC di fig. 3 ed alla definizione di coseno di
un angolo possiamo scrivere:

coss = BF/BA

cosy =CH/CA da cui:
BH = c cosp e CH =b cosy

Essendo: BC=BH+CH @)) tramite sostituzione:

a=ccosP + b cosy

Con riferimento alla fig. 4 possiamo dimostrare che la relazione vale anche nel caso di trian-
goli ottusangoli, dovendo essere:

BC=BH-CH (2
e: CH =b cos(nt — y) = b cosy

Per sostituzione nella precedente, la (1) & confermata come anche per tutti gli altri lati, poten-
do quindi scrivere:

a=ccosP + b cosy

b =c cosa + a cosy

c=acosP + b cosa
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Se andiamo ora a moltiplicare la prima relazione per a, la seconda per b e la terza per c, otte-
niamo:

a>=accos f+abcosy

b? =bc cos a + ba cos ¥

c?>=ac cos 3 + bc cos a

sottraiamo da ogni relazione le altre due:

a’> —b? — ¢? = -2bc cosa a? =b? + c? -2bc cosa
b? — ¢* — a? = —2ac cosf da cui: b? = ¢ + a? —2ac cosp
c?—a*>—Db*=-2ab cosy c?>=a’+ b? -2ab cosy

Le relazioni esprimono il teorema di Carnot o del coseno: in un triangolo qualunque, il qua-
drato della misura di un lato ¢ uguale alla somma dei quadrati degli altri due, diminuita del
doppio prodotto della misura di questi ultimi per il coseno dell’angolo tra essi compreso.

A fronte di un angolo compreso di tipo retto il coseno si annulla e le formule replicano il te-
orema di Pitagora; piu in generale il teorema del coseno traduce in forma algebrica un teore-
ma sull’equivalenza, ovvero: in un triangolo, il quadrato costruito su di un lato ¢ equivalente
alla somma dei quadrati costruiti sugli altri due lati “diminuita” del doppio del rettangolo
avente per lati il secondo lato del triangolo e la proiezione del terzo lato sul secondo stesso.
Il virgolettato sta ad indicare che trattasi di sottrazione quando 1’angolo compreso tra il se-
condo e terzo lato & acuto, diversamente parleremmo di somma.

Formule di Briggs

Queste formule consentono di calcolare gli angoli di un triangolo partendo dalla conoscenza
dei lati; dalle formule che descrivono il teorema di Carnot possiamo ricavare il coseno degli
angoli di un triangolo qualunque:

b>+c*—a’ c*+a’-b’ a’+b’>=¢?
cosgL = ——— cosp=—— cosy = ———
2bc 2ac 2ab

Consideriamo ora le formule di bisezione per coseno e seno:

o 1+ coso o +1-cosa

sen— =
V2 2 V2

In tali formule andiamo a sostituire 1’espressione di cos o in funzione dei lati del triangolo ed
otterremo dopo rapidi passaggi:

Cos

COsg=\/(b+c+a)(b+c—a) Seng=\/(a+b—c)(a—b+c)
2 2:/be 2 2:/bc

Puo tornare comodo esprimere le suddette formule in funzione del semiperimetro p (2p=a+b +c):

s VP(p—a) wn®_N(P-b)(p—c)
2 Jbe 2 Jbe
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