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4 Urti 

I fenomeni di urto riguardano la collisione tra due o più corpi che si scontrano 
in un piccolo lasso di tempo. Il loro studio richiede varie schematizzazioni che, 
in generale, vanno studiate caso per caso. Nel piccolo lasso di tempo in cui 
avviene l’urto si sviluppano delle forze impulsive che possono essere sia interne 
che esterne al sistema composto dai corpi che collidono. I dettagli microscopici 
che causano queste forze vengono trascurati, così come eventuali deformazioni 
dei corpi stessi. L’intero processo viene separato in un prima e un dopo l’urto e 
l’obiettivo dell’esercizio è trovare le velocità dei corpi un istante 
immediatamente dopo l’urto. 

Tenuto conto di queste approssimazioni, negli esercizi con urti è fondamentale 
leggere attentamente il testo dell’esercizio, visto che questo solitamente 
contiene informazioni cruciali per il corretto svolgimento. Difatti, per 
schematizzare correttamente il problema è necessario capire quali sono le 
ipotesi in gioco, ad esempio se si tratta di urto elastico, anelastico o 
completamente anelastico e quali forze possono essere impulsive. Dopo aver 
compreso le ipotesi sarà possibile capire quali quantità sono conservate, per 
esempio energie cinetiche, quantità di moto lungo certe direzioni e/o momenti 
angolari. 

I passi principali per arrivare alla corretta schematizzazione sono i seguenti: 

1. Nel caso in cui il testo dell’esercizio non dia come dato le velocità dei 
corpi immediatamente prima dell’urto, occorre trovare quali siano i 
vettori velocità dei corpi in tale istante. Ad esempio, nel caso di un urto 
tra un oggetto fermo ed uno che cade dall’alto, si devo trovare la velocità 
che il corpo acquista durante la caduta. Si passa poi alla 
schematizzazione del processo di urto stesso. 

2. Si procede facendo un disegno con i due corpi che urtano in contatto tra 
loro, si disegna il diagramma delle forze come descritto nella sezione 
1.2, e si cerca di individuare quali di queste forze, interne od esterne, 
possono essere impulsive. 

– Tra le forze interne sono sicuramente impulsive quelle di 
contatto tra i due corpi che collidono. 

– Tra le forze esterne possono essere impulsive le reazioni 
vincolari dovute al contatto tra i corpi in collisione ed oggetti 
esterni, come piani di appoggio, scalini e perni. 
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– Nel caso siano presenti forze di attrito, queste possono essere 
impulsive. Difatti, nel caso statico la forza di attrito ����� soddisfa 
 ���� ≤ "#$ mentre nel caso dinamico  ���� = "%$ dove $ è la 
componente normale della reazione vincolare. Se $ è impulsiva, 
allora anche  ���� può o deve essere impulsiva, rispettivamente 
nel caso di attrito statico o dinamico. 

3. Si identificano le quantità conservate dal sistema composto dai due 
corpi in collisione, ad esempio: 

– Se l’urto è di tipo elastico si conserva l’energia cinetica totale. 

– In mancanza di forze esterne impulsive, si conserva il vettore 
quantità di moto del sistema. In alternativa, anche in presenza 
di forze esterne impulsive, se queste hanno componente nulla 
lungo una particolare direzione identificata dal versore &' , allora 
la componente della quantità di moto totale lungo &'  si conserva. 

– Se le forze esterne impulsive sono applicate ad un punto (, 
allora si conserva il vettore momento angolare totale rispetto al 
polo (. Più in generale, il momento angolare del sistema rispetto 
ad un polo ( si conserva durante l’urto ogniqualvolta il 
momento delle forze esterne impulsive rispetto ad ( è nullo. 
Questo può accadere anche quando la forza non è applicata in (, 
ma ha comunque braccio nullo rispetto ad (. 

4. In alcuni esercizi con più gradi di libertà, le equazioni trovate sfruttando 
le leggi di conservazione del sistema non sono sufficienti a trovare tutte 
le componenti delle velocità dei corpi dopo l’urto. In questi casi può 
essere utile concentrarci sulle forze interne che si sviluppano durante il 
contatto, valutando se sia possibile prevedere la loro direzione. In caso 
affermativo, sappiamo che tali forze sono le uniche responsabili della 
variazione della quantità di moto dei singoli corpi in collisione. 
Pertanto, si trova che la quantità di moto del singolo corpo lungo le 
direzioni ortogonali alle forze interne impulsive saranno conservate. 

5. Infine, nel caso più complesso in cui non sia possibile identificare un 
numero sufficiente di quantità conservate, si procede studiando 
direttamente le equazioni cardinali per i singoli costituenti del sistema, 
trascurando le forze non impulsive in modo da trovare relazioni tra le 
quantità in gioco. 
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Figura 6: Un punto materiale di massa � e velocità iniziale  ⃗" orizzontale urta in 

modo elastico contro un cuneo triangolare vincolato a ruotare senza attrito 

attorno al polo #. Per effetto dell’urto il punto materiale acquista una velocità 

finale  ⃗$ , mentre il cuneo inizia a ruotare attorno a # con velocità angolare %&&⃗ $ . 

Non sono presenti forze di attrito. Nel disegno vengono anche mostrate le reazioni 

vincolari, interne od esterne, che potrebbero essere impulsive: la forza interna '&⃗ ( 

di contatto tra � ed il cuneo, la reazione vincolare '&⃗ ) del piano d’appoggio 

orizzontale sul cuneo e la reazione '&⃗* del perno su cuneo, quest’ultima di 

direzione ignota.  

Come esempio si consideri il problema mostrato in figura 6. Il problema 
richiede il calcolo di tre quantità incognite: � , ossia l’unica componente non 
nulla del vettore �!!⃗  , lungo l’asse # ortogonale al piano $%, e le componenti & ' 
e & ( del vettore velocità finale &⃗ = & ')̂ + & (,̂ del punto materiale. Per 
risolvere il problema servono quindi tre equazioni, che possono essere 
identificate nel modo seguente, considerando sia le ipotesi dell’esercizio che le 
forze impulsive: 

1. La prima equazione viene dall’assunzione di urto elastico, per la quale 
l’energia cinetica del sistema composto da cuneo e punto materiale si 
conserva durante l’urto 
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  dove 45 è il momento d’inerzia del cuneo rispetto ad un asse passante 
per 7 e ortogonale al piano $%. 

2. Considerando il sistema composto da cuneo e punto materiale, le 
reazioni vincolari esterne sono solo 8!⃗ 9 e 8!⃗5. Vista la natura dell’urto, ci 

aspettiamo che 8!⃗5 sia impulsiva e che 8!⃗ 9 non lo sia. Difatti, ci 
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aspettiamo che il cuneo dopo l’urto inizi a ruotare a causa del vincolo 
introdotto dal perno. In assenza di tale vincolo, il cuneo probabilmente 
traslerebbe lungo la direzione orizzontale. Siccome il cuneo si oppone a 
questo tipo di moto, la forza � ⃗ " sarà sicuramente impulsiva. La 
componente orizzontale della quantità di moto sicuramente non sarà 
conservata durante l’urto, mentre per quanto riguarda la componente 
verticale il discorso è più complesso, data la presenza dell’altra forza � ⃗ #. 

In generale, non potendo prevedere quale sia la direzione di � ⃗ ", non 
possiamo scrivere un’equazione di conservazione per la quantità di 
moto lungo una direzione particolare. Per quanto riguarda il ruolo di 
� ⃗ #, per la geometria del problema ci aspettiamo che � ⃗ # non sia 
impulsiva. Difatti, ci aspettiamo che l’urto faccia ruotare in senso orario 
il cuneo e la forza � ⃗ # né aiuta né si oppone a questa rotazione. Pertanto, 
considerando che la sola forza esterna impulsiva è applicata ad $, 
possiamo imporre che il momento totale della quantità di moto del 
sistema rispetto ad $ si conservi durante l’urto: 

(% − $) × !⃗# = ($ − &) ×  !⃗' + *,-..⃗ ' , 

  dove $ identifica la posizione di   nel momento in cui avviene l’urto. 

  Diverso sarebbe stato il ruolo di 0.⃗ 1 nel caso in cui l’urto fosse avvenuto 
in un punto più in basso del cuneo, ad esempio nelle vicinanze dello 
spigolo di sinistra. In tal caso l’urto avrebbe favorito la rotazione del 
cuneo in senso antiorario, ma tale rotazione sarebbe stata impossibile a 
causa del piano di appoggio. In questo secondo caso quindi ci saremmo 
potuti aspettare che 0.⃗ 1 fosse impulsiva e che il momento totale della 
quantità di moto rispetto a & non fosse conservato. 

3. Avendo considerato il sistema composto da cuneo e punto materiale 
siamo stati in grado di scrivere soltanto due equazioni scalari, a fronte 
delle tre richieste per risolvere il problema. Difatti, il momento della 
quantità di moto risulta non-banale solo nella direzione ortogonale al 
piano 23. Per trovare una terza equazione è necessario abbandonare la 
schematizzazione di sistema e concentrarci sui singoli corpi che lo 
compongono. Viste le reazioni vincolari in gioco, è più semplice 
concentrarci sul punto materiale, dato che questo subisce la sola forza 
impulsiva 0.⃗ 4. Tale forza non è stata considerata nei due punti 
precedenti in quanto interna al sistema composto da cuneo e punto 
materiale. Date le ipotesi dell’esercizio, in cui vengono trascurate tutte 
le forze di attrito, sappiamo che 0.⃗ 4 è normale al piano del cuneo. 
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Siccome tale forza è l’unica capace di cambiare la quantità di moto del 
punto materiale, possiamo concludere che la quantità di moto del punto 
materiale lungo la direzione � ⃗  parallela al piano inclinato definito dal 
cuneo si conservi durante l’urto 

"#⃗$ ⋅ �& = "#⃗' ⋅ �&. 

In conclusione, avendo considerato le ipotesi del problema e le leggi di 
conservazione compatibili con le forze impulsive in gioco, siamo stati in grado 
di scrivere un numero di equazioni sufficienti a risolvere il problema. La loro 
risoluzione esplicita viene lasciata per esercizio. 
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5 Esercizi 

Dinamica del Punto Materiale. Esercizio n.1 “Molla e Urto” 

(Forza Elastica, Urti, Conservazione dell’Energia, Traiettoria Ellittica) 

Si consideri il sistema descritto nella Figura di sinistra, composto da un punto 
materiale di massa m, collegato a un estremo di una molla di costante elastica k e 
lunghezza a riposo nulla. L’altro estremo della molla è sospeso al soffitto nel 
punto O.  

a) Si determini la lunghezza della molla nella posizione di equilibrio. 
b) In una seconda fase la massa m viene urtata in maniera completamente 

anelastica da un punto materiale di massa M, che si muove con una 
velocità v0 diretta lungo la verticale (vedi Figura centrale). Si determini 
il minimo valore della velocità v0 (� 

!"#) affinché la massa m urti il 
soffitto. 

c) Si consideri ora v0= � 
!"#/2. Si studi il moto della massa m, 

determinandone in particolare la legge oraria.  
d) Si consideri la situazione descritta nella figura di destra, in cui la massa 

m viene urtata in maniera completamente anelastica da un punto 
materiale di massa M, che si muove con una velocità v1 diretta lungo 
l’orizzontale. Si studi il moto della massa m, determinandone le leggi 
orarie per il moto lungo la verticale e lungo l’orizzontale, e 
determinandone la traiettoria. 

 
Dati numerici: M = 2 kg, m = 1 kg, k = 10 N/m, v1 = 1 m/s, g = 9.81 m/s2. 

                                       
 
Soluzione 

a) Sulla massa m agiscono la forza peso e la forza elastica. All’equilibrio la 
risultante delle forze deve essere nulla. Scelto l’asse X verticale verso il 
basso con origine in O 

− !"# + $% = 0,                        !"# =
$%

 
= 0.981 $ 
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b) La forza peso e la forza elastica non sono forze impulsive e possiamo 
considerare l’urto unidimensionale con conservazione della quantità di 
moto totale lungo l’asse X. Essendo l’urto completamente anelastico 

� ! = (� +") #$%,                !"#$ = %% + & !' 

Per trovare la velocità minima perché m+M raggiunga il soffitto 
possiamo usare la conservazione dell’energia meccanica dopo l’urto 
imponendo che m+M arrivi al soffitto con velocità nulla  12 (& + %)!"#$* + 12 ,-./* − (& + %)3-./ = 0 

 

5!'"675 = & + %% 823-./ − ,& + % -./* = 3% 8&(& + %)(2% + &), = 6.01 &/< 

diretta in senso opposto all’asse X, !'"67 = −5!'"675. 
c) Usiamo ancora la conservazione dell’energia ma questa volta con 

 !' = !'"67/2 

> = 12 (& + %)-̇* − (& + %)3- + 12 ,-* 

Deriviamo rispetto al tempo (E è una costante), dividiamo per -̇ e 
semplifichiamo 

-̈ + A*- − 3 = 0,                A = 8 ,& + % 

É un’equazione differenziale lineare del secondo ordine non omogenea, 
la cui soluzione è data dalla somma della soluzione dell’omogenea 
associata (equazione del moto armonico) e dalla soluzione particolare. 

- = C sin AD + E cos AD + (& + %)3,  

Le costanti di integrazione si determinano con le condizioni iniziali 

-(0) = -./ = &3, = E + (& + %)3,                E = − %3,
-̇(0) = %& + % !'"67

2 = − 32 8&(2% + &),(& + %) = CA      C = − 32, F&(2% + &) 

d) Subito dopo l’urto anelastico la velocità è !G' = $"#$ !G diretta 

orizzontalmente. 
Scegliamo l’asse X sempre verticale verso il basso e l’asse Y orizzontale 
verso destra. Le equazioni di moto sono (& + %)-̈ = −,- + (& + %)3(& + %)Ḧ = −,H  

 



ESERCIZI 

41 

le cui soluzioni sono 

 � =  ! cos("# + $!) + (%&')*
, ,   / =  0 sin1"# + $02,    " = 3 ,

%&' 

Le costanti di integrazione si determinano con le condizioni inziali 

�(0) = �56 = 78
9 ,    �̇(0) = 0,    /(0) = 0,    /̇(0) = ;<> = ?

7 + ? ;< 

da cui $! = $0 = 0,    ! = − '*
, ,    0 = 'AB

C,(%&')  
La traiettoria è un’ellisse di asse maggiore Ax, asse minore Ay centrato in � = (���)��  

 � − (" +#)$%&' *
,
+ - .&/0

, = 1 
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Dinamica dei Sistemi. Esercizio n.1 “Carrucola Mobile” 

(Forza Elastica, Momento d’Inerzia, Conservazione dell’Energia, Rotolamento Puro) 

Si consideri il sistema mostrato nella figura a sinistra, composto da una 
massettina di massa m, una carrucola ideale, un disco di massa M e raggio R ed 
una molla ideale di costante elastica k e lunghezza a riposo nulla. Il disco è 
fissato al perno O e può ruotare senza attrito attorno ad esso. L’elongazione 
massima della molla è minore della distanza di O dal soffitto. Un filo ideale 
(inestensibile e di massa trascurabile) collega la massettina m alla carrucola, al 
disco, ed infine alla molla come mostrato in figura. L’altra estremità della molla 
è fissata al soffitto. 
Assumendo che il filo non slitti attorno al disco, si calcolino: 

a) l’allungamento della molla quando il sistema si trova all’equilibrio; 
b) il periodo di oscillazione del sistema nell’ipotesi che inizialmente la 

massettina m sia stata spostata di un tratto ∆y verso il basso rispetto 
alla posizione di equilibrio trovata nel punto a); 

c) le tensioni nei vari punti del filo, nelle ipotesi del punto b), quando la 
massettina m si trova nel punto più alto della sua traiettoria. 

Si faccia ora riferimento alla figura di destra, dove il vincolo in O è stato rimosso. 
In questo caso il filo è arrotolato attorno al disco e fissato al soffitto nell’altra 
estremità. 

d) Notando che durante la caduta del disco il filo si srotola, si calcoli 
l’accelerazione del centro di massa del disco. 

Dati numerici: m = 1 kg, M = 2 kg, R = 10 cm, k = 98 N/m, ∆y = 5 cm. 
 

                           
 
Soluzione 

a) Le condizioni di statica applicate al filo ideale impongono che le forze 
agli estremi di ogni suo segmento si compensino, inoltre la massettina 
m deve essere in equilibrio. Abbiamo quindi per i moduli delle forze 
� ! = "# = "$ = %&. Scegliendo l’asse Y verticale discendente con 
l’origine nel punto di riposo della molla '( ) = %& da cui 

( ) =
%&

'
= 0.1 % 
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b) Utilizziamo la conservazione dell’energia meccanica del sistema 

� =
1

2
 !" +

1

2
#Ω" +

1

2
%&" − (& 

dove I è il momento d’inerzia del disco, W la sua velocità angolare con 
la condizione cinematica di rotolamento puro v=RW con v velocità di m. 
Utilizzando il risultato di a) possiamo scrivere 

� =
1

2
 ! + "#$% &$ + 12 '() − ),-.$ + /034. 

È formalmente analogo ad un oscillatore armonico di pulsazione 6$ =7
89 :;< = 7

89><
 per cui il periodo di oscillazione è  

? = 2@A! + B2' = 0.9 3 

c) Per quanto riguarda i moduli delle forze ?F = G,H = '),   ?$ = ?J =!(L − )̈) 
La posizione di equilibrio è nota dal punto a), da cui )̈ + 6$() − ),-. =0 
Data la posizione iniziale Dy rispetto alla posizione di equilibrio la 
soluzione è ) = ∆) cos 64 + ),-  

La quota massima di m è raggiunta per 4 = 4∗ = @/6 e vale )∗ =)(4∗) = −∆) + ),- a cui corrisponde l’accelerazione )̈∗ = )̈(4∗) =6$∆). 
Abbiamo quindi                   ?F = ')∗ = '(),- − ∆). = 4.9 S ?J = ?$ = !L − !6$∆) = 7.35 S 
 
 
 
 
 




