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Ci sono stati notevoli progressi nella conoscenza dei genomi rispetto alla 
precedente edizione di questo libro che è stata pubblicata dieci anni fa. Nel 
2007, il sequenziamento di nuova generazione era agli esordi e si iniziavano 
a sfruttare i metodi ad alta resa per la trascrittomica e per la proteomica. 
L'applicazione di questi metodi negli ultimi dieci anni ha determinato un 
aumento esponenziale del numero di specie per le quali le sequenze e le 
annotazioni genomiche sono attualmente disponibili e ha permesso più ver-
sioni del genoma di una singola specie da esaminare. La profusione di nuove 
sequenze ha avuto un impatto particolarmente drammatico sulla genomica 
batterica, con l’introduzione del concetto di pan-genoma e la scoperta di 
un ampio trasferimento laterale di geni tra specie. La nostra conoscenza dei 
genomi eucariotici ha subito un cambiamento altrettanto drammatico, con la 
scoperta di nuovi tipi di RNA non codi�canti, inclusi i numerosi RNA lunghi 
che sono trascritti da regioni presumibilmente intergeniche di molti genomi.

Genomi 4 mantiene la struttura generale delle precedenti edizioni, con il libro 
diviso in quattro parti che analizzano il sequenziamento e l’annotazione del 
genoma, l’anatomia del genoma, l'espressione del genoma e la replicazione 
e l’evoluzione del genoma. L'ordine dei capitoli rimane invariato, con alcune 
piccole modi�che. Tuttavia, il testo è stato completamente aggiornato e, in 
molti capitoli, sostanzialmente rivisto. In particolare, lo sviluppo della trascrit-
tomica e della proteomica ha raggiunto un punto in cui in Genomi 4 è stato 
possibile descrivere i processi di trascrizione e di traduzione dalla prospet-
tiva dell’intero genoma, piuttosto che semplicemente attraverso un esame 
dell'espressione di singoli geni. Questo era il mio obiettivo quando ho scritto 
la prima edizione di Genomi nel lontano 1999, ma le informazioni disponi-
bili in quel momento hanno determinato il fatto che questi capitoli centrali 
erano trattamenti piuttosto ortodossi del gene piuttosto che dell'espressione 
del genoma. Siamo ancora lontani dall'essere in grado di descrivere l'intera 
espressione di un genoma come un singolo processo integrato, ma ci stiamo 
arrivando e spero di essere stato capace di trasmettere al lettore, in Genomi 4, 
almeno alcuni aspetti della natura complessiva dell'espressione del genoma.

Genomi 4 è in preparazione da tempo e vorrei ringraziare Liz Owen della 
Garland Science per il suo instancabile entusiasmo per il libro e per i suoi 
delicati richiami sull'approssimarsi delle scadenze. Desidero anche ringra-
ziare David Borrowdale e Georgina Lucas per la gestione della produzione del 
libro alla Garland e Matthew McClements per le sue splendide opere d'arte. 
Così come nel caso delle precedenti edizioni, Genomi 4 non sarebbe stato 
�nito senza il supporto di mia moglie Keri. Il riconoscimento presente nella 
prima edizione che recita "se trovi utile questo libro, dovresti ringraziare Keri, 
non me, perché è lei che ha assicurato che fosse scritto" è altrettanto vero per 
la quarta edizione.

PREFAZIONE



VI PREFAZIONE

UNA NOTA PER IL LETTORE 

Ho cercato di rendere la quarta edizione di Genomi quanto più agevole pos-
sibile per i lettori. Il libro contiene quindi una serie di strumenti ideati per 
facilitare l’apprendimento e per aiutare il lettore ad assimilare i contenuti.

Organizzazione del Libro 

Genomi 4  è diviso in quattro parti:

Parte I – Studio dei genomi inizia con un capitolo orientativo che introduce il 
lettore ai genomi, ai trascrittomi e ai proteomi per passare poi ai metodi, cen-
trati sul clonaggio e sulla PCR, che sono stati utilizzati nell’era pre-genomica 
per esaminare singoli geni (Capitolo 2). Le tecniche che riguardano in maniera 
più speci"ca lo studio dei genomi sono descritte nell’ordine in cui verrebbero 
utilizzate in un progetto genomico: metodi per costruire mappe genetiche e 
"siche (Capitolo 3); metodologie di sequenziamento del DNA e strategie usate 
per assemblare una sequenza genomica (Capitolo 4). Due capitoli sono dedi-
cati all’analisi delle sequenze genomiche: il Capitolo 5 analizza l’annotazione 
del genoma mediante l’identi"cazione di geni e di altre caratteristiche e il 
Capitolo 6 esamina l’analisi funzionale dei geni che sono stati scoperti.

Parte II – Anatomia dei genomi passa in rassegna l’anatomia dei diversi 
genomi che si ritrovano sul nostro pianeta. Il Capitolo 7 tratta dei genomi 
nucleari eucariotici con un’enfasi particolare rivolta al genoma umano, in 
parte a causa dell’importanza del genoma umano in molte aree di ricerca e 
anche perché il nostro genoma è il migliore rispetto a tutti i genomi per i quali 
sono disponibili le sequenze. Il Capitolo 8 si occupa dei genomi procariotici 
e degli organelli eucariotici, inclusi nella stessa sede per le loro origini proca-
riotiche. Il Capitolo 9 descrive i genomi dei virus insieme agli elementi gene-
tici mobili dal momento che alcuni elementi mobili sono correlati ai genomi 
virali.

Parte III – Espressione dei genomi descrive in che modo l’informazione 
biologica contenuta in un genoma è utilizzata dalla cellula in cui il genoma 
si trova. Il Capitolo 10 a$ronta il problema sempre più importante di come 
la struttura della cromatina in%uenzi l’espressione delle diverse parti del 
genoma. Il Capitolo 11 contiene una descrizione dettagliata delle proteine di 
legame al DNA, che ricoprono un ruolo essenziale nell’espressione di quelle 
parti del genoma che sono attive in un particolare momento. Il Capitolo 12 
esamina il trascrittoma, descrivendo in che modo sono studiati i trascrittomi, 
la loro composizione e il modo in cui il trascrittoma di una cellula è sintetiz-
zato e mantenuto. Il Capitolo 13 fornisce una descrizione equivalente della 
proteomica e del proteoma. Il Capitolo 14 conclude questa parte del libro 
esplorando in che modo il genoma agisce nel contesto di una cellula o di un 
organismo, rispondendo ai segnali extracellulari e guidando i cambiamenti 
biochimici che sono alla base del di$erenziamento e dello sviluppo.

Parte IV – Replicazione ed evoluzione dei genomi associa gli eventi di repli-
cazione, mutazione e ricombinazione del DNA alla graduale evoluzione dei 
genomi nel tempo. Nei Capitoli 15-17 sono descritti i processi molecolari alla 
base della replicazione, della mutazione e della ricombinazione e nel Capitolo 
18 viene spiegato come probabilmente questi processi hanno determinato la 
struttura e il contenuto dei genomi nel corso dell’evoluzione. Il Capitolo 18 si 
conclude con alcuni casi studio che illustrano in che modo si stanno utiliz-
zando la "logenetica molecolare e la genetica di popolazione nella ricerca e 
in biotecnologia. 



PREFAZIONE    VII

OBIETTIVI DI APPRENDIMENTO

Ogni capitolo presenta una serie di Domande a risposta breve e di Problemi 
di approfondimento così come una lista di Ulteriori letture. Alla �ne del libro 
è presente un esteso Glossario.

Le Domande a risposta breve richiedono risposte lunghe da 50 a 500 parole. 
Le domande, che si riferiscono all’intero contenuto del capitolo, sono rivolte 
in maniera diretta e la maggior parte delle risposte possono essere veri�cate 
semplicemente controllando la parte corrispondente del testo. Lo studente 
può utilizzare queste domande sistematicamente per rielaborare ogni capi-
tolo o selezionarne alcune per valutare la propria capacità di rispondere a 
domande su argomenti speci�ci. Queste domande possono anche essere 
a#rontate senza l’ausilio del libro.

I Problemi di approfondimento richiedono una risposta più approfondita, 
sebbene varino come genere e di%coltà. I più semplici richiedono poco più 
di un approfondimento della bibliogra�a nota, con l’intenzione di far appren-
dere allo studente maggiori dettagli rispetto a quelli forniti da Genomi 4. Altri 
problemi richiedono agli studenti di valutare una fase o un’ipotesi, basandosi 
su ciò che hanno appreso dal testo e possibilmente ampliando le conoscenze 
con delle letture sull’argomento. L’intento è quello di stimolare una ri&es-
sione critica e generare una maggiore consapevolezza. Alcuni problemi sono 
realmente di%cili, al punto che non esiste una risposta rigorosa alle domande 
poste. Questi problemi sono stati ideati per stimolare discussioni e specula-
zioni che ra#orzino la conoscenza di ciascuno studente e lo spingano a ri&et-
tere attentamente sulle proprie a#ermazioni. Questi problemi possono essere 
a#rontati singolarmente dagli studenti o in alternativa possono rappresen-
tare il punto di partenza per una discussione di gruppo.

Le Ulteriori letture elencano alla �ne di ogni capitolo articoli scienti�ci, ras-
segne e libri che considero come più utili fonti di materiale addizionale. Il 
mio proposito è stato quello di rendere la bibliogra�a di Genomi 4 il più utile 
possibile per gli studenti che devono scrivere saggi e dissertazioni su partico-
lari argomenti. È per questo che ho incluso articoli scienti�ci solo nel caso in 
cui il contenuto sia comprensibile al lettore medio del libro. L’enfasi è posta 
su rassegne accessibili, perché questi articoli generali sono spesso più utili 
per spiegare il contesto e l’importanza di un lavoro. La maggior parte delle 
letture è suddivisa in sezioni che ri&ettono l’organizzazione degli argomenti 
nel capitolo e in alcuni casi ho aggiunto un breve riassunto di una riga che ne 
descrive il valore, per aiutare il lettore nella scelta. In alcuni casi, le Ulteriori 
letture includono URL per database e altre risorse online rilevanti per gli argo-
menti trattati nel capitolo.

Il Glossario de�nisce termini evidenziati in grassetto nel testo, insieme a un 
numero di termini aggiuntivi che il lettore potrebbe incontrare nella consul-
tazione di libri o articoli presenti nelle liste delle letture. Il Glossario pertanto 
fornisce un mezzo rapido e conveniente mediante il quale il lettore può ricor-
dare dei termini tecnici rilevanti per lo studio dei genomi e rappresenta un 
aiuto alla ripetizione per assicurarsi che quelle de�nizioni siano chiaramente 
comprese durante i minuti di incertezza che molti studenti sperimentano 
immediatamente prima un esame.

MATERIALE DI SUPPORTO PER I DOCENTI

I docenti che utilizzano il testo a scopo didattico possono scaricare dal sito 
www.edises.it, previa registrazione all’area docenti, le immagini del libro in 
formato PowerPoint.

http://www.edises.it/
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NOTE SULL’AUTORE

Sono stato molto attratto dal mondo naturale )n da giovane. Ho iniziato la 
mia carriera di ricercatore studiando gli e$etti dell’inquinamento da metalli 
sui microrganismi e la tolleranza che alcune piante mostrano verso alte con-
centrazioni di metalli tossici. In seguito, mi ha entusiasmato il DNA e ho 
lavorato su geni mitocondriali nei funghi per imparare le nuove tecniche (a 
quei tempi) per il clonaggio genico e per il sequenziamento del DNA. Ho con-
tribuito alla scoperta di introni mitocondriali e allo studio che ha descritto 
la struttura base-paired di questi introni. Successivamente, ho rivolto il mio 
interesse al DNA antico e sono stato uno dei primi ad e$ettuare estrazioni 
di DNA dalle ossa e da resti preservati di piante. Questo studio ha richiesto 
una stretta collaborazione con gli archeologi e ha determinato il mio attuale 
impegno verso la paleogenomica, le origini dell'agricoltura e l’evoluzione 
delle piante domestiche.

Ho conseguito il dottorato di ricerca presso l’UCL (University College London) 
nel 1977 e poi ho lavorato a New York, Oxford, Colchester e Manchester pri- 
ma di iniziare nel 1984 come docente di Biotecnologie presso l’UMIST 
(University of Manchester Institute of Science and Technology). Sono stato 
nominato Professore di Archeologia biomolecolare nel 2000 e sono stato 
Responsabile delle Scienze biomolecolari presso l’UMIST dal 2002 al 2004. 
Sono stato quindi Preside Associato nella Facoltà di Scienze della vita dell’U-
niversità di Manchester )no al 2006, prima di prendere una pausa dagli impe-
gni amministrativi per avere più tempo per fare ricerca. 

I miei altri libri di testo universitari comprendono Genetics, A Molecular 
Approach (Garland Science).
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In questo capitolo studieremo i vari modi in cui vengono costruite le mappe ge-
nomiche. Una mappa genomica, come qualsiasi altro tipo di mappa, indica le 
posizioni di caratteristiche interessanti e altri punti di riferimento importanti. In 
una mappa genomica, queste caratteristiche e i punti di riferimento sono i geni e 
altre sequenze distintive del DNA. Sebbene una varietà di tecniche possa essere 
utilizzata per mappare i geni e altri punti di riferimento del DNA, per convenzione 
la mappatura genomica viene effettuata con due approcci sperimentali comple-
mentari:

• La mappatura genetica (Sezioni 3.2–3.4), chiamata anche analisi di asso-
ciazione o linkage, che è basata sull’uso di tecniche genetiche, inclusi 
esperimenti di riproduzione programmati o, nel caso della specie umana, 
l’esame delle storie familiari (anche chiamate pedigree).

• La mappatura fisica (Sezioni 3.5 e 3.6) che utilizza tecniche di biologia 
molecolare per esaminare direttamente le molecole di DNA al fine di iden-
tificare le posizioni di caratteristiche sequenze, inclusi i geni.

Prima di esplorare le varie tecniche coinvolte nella mappatura genetica e 
fisica, dobbiamo prima capire perché sono importanti le mappe genomiche.

3.1 PERCHÉ È IMPORTANTE UNA MAPPA GENOMICA
Lo studio dei genomi è spesso visto come un’area moderna e intensa della ricerca  
biologica, molto lontana dal lavoro dei genetisti della vecchia era come Gregor 
Mendel. Eppure molte delle tecniche utilizzate per costruire le mappe genomiche 
sono basate proprio sulle scoperte di Mendel e degli altri primi genetisti. Dobbia-
mo quindi dedicare qualche minuto per capire perché la mappatura del genoma, 
nonostante sia un vecchio tipo di biologia, è ancora importante nel ritmo freneti-
co della ricerca nell’era genomica.

Le mappe genomiche sono necessarie per sequenziare i genomi 

più complessi

Durante i primi tempi della ricerca sul genoma, si riteneva che acquisire una 
mappa dettagliata sarebbe stato un prerequisito essenziale per l’assemblaggio 
della corretta sequenza di un genoma. Questo perché il sequenziamento del DNA 
ha una limitazione importante: solo con la tecnologia più sofisticata e recente-
mente introdotta è possibile ottenere una sequenza di oltre 750 bp (base pair, cioè 
coppie di basi) in un singolo esperimento. Questo significa che la sequenza di una 
lunga molecola di DNA deve essere ricostruita da una serie di sequenze più corte. 
Ciò si ottiene tagliando la molecola di DNA in frammenti, che vengono sequen-
ziati singolarmente e poi, mediante il computer, con appositi software, si cercano 
i punti di sovrapposizione per ricostruire la sequenza originaria (Figura 3.1). 
Questo metodo, chiamato shotgun, rappresenta l’approccio standard per il se-
quenziamento del genoma, ma presenta due problemi. Il primo è che, special-
mente con genomi più grandi, potrebbe non essere possibile ottenere sequenze 

3.1 PERCHÉ È IMPORTANTE 
UNA MAPPA GENOMICA

3.2 MARCATORI PER LA 
MAPPATURA GENETICA

3.3 BASI DELLA MAPPATURA 
GENETICA

3.4 ANALISI DI ASSOCIAZIONE 
IN DIVERSI TIPI DI ORGANISMI

3.5 MAPPATURA FISICA 
MEDIANTE ESAME DIRETTO 
DELLE MOLECOLE DI DNA

3.6 MAPPATURA FISICA MEDIANTE 
ASSEGNAZIONE DI MARCATORI 
A FRAMMENTI DI DNA

CAATGCATTA

GCAGCCAATGC

DNA

Frammenti

Sequenze

Sovrapposizione

500  bp

Figura 3.1  Metodo shotgun per l’assemblaggio delle sequenze. La molecola 
di DNA viene spezzata in piccoli frammenti, ognuno dei quali viene sequenziato. 
La sequenza originaria viene ricostruita attraverso la sovrapposizione tra le 
sequenze dei singoli frammenti.
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brevi sufficienti per produrre una sequenza contigua di DNA per l’intero genoma 
e quindi la sequenza del genoma potrebbe essere composta da molti segmenti 
brevi separati da lacune che rappresentano parti del genoma che, casualmente, 
non sono stati coperti dalle sequenze che sono state ottenute (Figura 3.2). Se 
questi segmenti non sono collegati, come possono essere posizionati corretta-
mente l’uno rispetto all’altro per costruire la sequenza del genoma? La risposta è 
identificare all’interno di quei segmenti caratteristiche che si trovano sulla mappa 
genomica. Sistemando i segmenti sulla mappa, può essere ottenuta la sequenza 
corretta del genoma, anche se quella sequenza contiene ancora alcune lacune.

Il secondo problema con l’approccio shotgun è che può portare a errori se il 
genoma contiene sequenze ripetitive di DNA. Queste sono sequenze, lunghe 
molte chilobasi, che si ripetono in due o più punti in un genoma. Quando un ge-
noma contenente DNA ripetitivo, viene tagliato in frammenti, alcuni di questi 
conterranno gli stessi motivi di sequenza. Sarebbe molto facile riassemblare que-
ste sequenze in modo tale che una parte del DNA tra le ripetizioni è lasciato fuori, 
o collegare insieme due tratti abbastanza separati dello stesso o di diversi cromo-
somi (Figura 3.3A). Ancora una volta, una mappa genomica consente di evitare 
errori di questo tipo. Se le caratteristiche di sequenza su entrambi i lati di una re-
gione ripetitiva corrispondono alla mappa genomica, vuol dire che la sequenza in 
quella regione è stata assemblata in maniera corretta. Se la sequenza e la mappa 
non coincidono, vuol dire che è stato fatto un errore e l’assemblaggio deve essere 
rivisto (Figura 3.3B).

Nel corso degli anni, la tecnologia di sequenziamento ha acquisito maggiore 
potenza e ha permesso di generare un numero sempre crescente di brevi sequenze 
da un singolo genoma: ciò significa che la probabilità che la sequenza finale con-
tenga molte lacune è molto bassa. Allo stesso tempo, gli algoritmi informatici usati 
per assemblare le sequenze in segmenti contigui sono diventati più sofisticati. Gli 
algoritmi più recenti sono in grado di riconoscere quando l’assemblaggio raggiun-
ge una regione ripetitiva di DNA e assicurano che la sequenza attorno a queste re-
gioni non sia messa assieme in modo errato (Sezione 4.3). Le mappe sono diventa-
te quindi meno importanti. Molti genomi procariotici (che sono relativamente 
piccoli e contengono poco DNA ripetitivo) sono stati sequenziati senza riferimento 
a una mappa e un numero crescente di progetti di genomi eucariotici sta facendo a 
meno di esse. Tuttavia, le mappe non sono ancora del tutto ridondanti come aiuto 
al sequenziamento del genoma. Una delle più grandi sfide oggi è ottenere sequen-
ze genomiche per importanti colture vegetali. Molte specie vegetali hanno genomi 
di grandi dimensioni con un cospicuo contenuto di DNA ripetitivo. Il girasole, He-
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Figura 3.2  Utilizzo di una mappa 
genomica per l’assemblaggio della 
sequenza. Un genoma è stato spezzato 
in brevi frammenti di DNA, che sono stati 
sequenziati mediante il metodo shotgun. 
Quando le sequenze sono assemblate, 
si ottengono una serie di segmenti 
del genoma non collegati. I segmenti 
contengono geni e altre caratteristiche di 
sequenza (A, B, C, ecc.) le cui posizioni nel 
genoma sono state mappate. La mappa 
può essere quindi utilizzata per identificare 
le posizioni dei segmenti nella sequenza 
del genoma.

Figura 3.3  Possibili errori 
nell’assemblaggio della sequenza a 
causa del DNA ripetitivo. (A) La molecola 
di DNA contiene due copie di una sequenza 
ripetuta. Quando vengono esaminate 
le sequenze mediante shotgun, i due 
frammenti sembrano sovrapposti ma un 
frammento contiene la parte sinistra di 
una ripetizione e l’altro frammento quella 
destra dell’altra ripetizione. Se l’errore di 
assemblaggio non viene riconosciuto, il 
segmento di DNA tra le due ripetizioni 
non verrà inserito nella sequenza finale. 
Se le due ripetizioni fossero su cromosomi 
diversi, le sequenze di questi cromosomi 
verrebbero erroneamente fuse assieme. 
(B)  L’errore nell’assemblaggio della 
sequenza è riconosciuto perché le posizioni 
relative delle caratteristiche mappate (A, 
B, C, ecc.) nella sequenza assemblata non 
corrispondono alle posizioni corrette nella 
mappa genomica.
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lianthus annuus, che è una fonte di olio vegetale usata sia come alimento che come 
biocarburante, ne è un esempio. Il suo genoma è solo di poco più grande del geno-
ma umano (3600 Mb per H. annuus rispetto a 3235 Mb per quello umano), ma 
l’80% del genoma del girasole è costituito da DNA ripetitivo, rispetto a solo il 44% 
per il genoma umano. Il genoma dell’orzo ha anche circa l’80% di DNA ripetitivo ed 
è molto più grande, 5100 Mb. Una sfida ancora più grande viene presentata dal 
pane di grano, che è un esaploide: ciò significa che ha tre genomi, chiamati A, B e 
D. Ciascuno è di circa 5500 Mb (un totale complessivo di 16.500 Mb) con un conte-
nuto di DNA ripetitivo simile a quello dell’orzo. I progetti genoma per queste e altre 
colture importanti sono ancora in corso e, a causa della complessità dei loro geno-
mi, le mappe sono essenziali per assemblare le sequenze. Questa è un’area critica 
di ricerca: la comprensione di tutti gli aspetti della biologia delle colture è essenzia-
le per affrontare il problema della fame globale nei prossimi decenni.

Le mappe genomiche non sono solo di ausilio per il sequenziamento

Le mappe potrebbero aver acquisito meno rilievo come ausili nell’assemblaggio di 
sequenze del genoma, ma il loro valore in altri aspetti della ricerca sulla genomica 
non è diminuito. È importante riconoscere che il completamento della sequenza 
nucleotidica di un genoma non è fine a se stesso. Infatti, ogni genoma è semplice-
mente una serie di A, C, G e T, e l’elaborazione di queste lettere non ci dice molto, 
se non riguardo al modo in cui un genoma funge da riserva di informazioni biolo-
giche o come tali informazioni vengono utilizzate per specificare le caratteristiche 
della specie da studiare. Come vedremo nei Capitoli 5 e 6, la prima fase della com-
prensione della sequenza del genoma è identificare i geni che sono contenuti e 
assegnare le funzioni a quanti più geni possibili. Molti dei metodi utilizzati per as-
segnare le funzioni iniziano con un gene e ci si chiede cosa fa questo gene; tuttavia 
il processo inverso, cioè quando si parte da una funzione e ci chiediamo qual è il 
gene responsabile, è altrettanto importante. Come vedremo nella Sezione 6.4, una 
mappa genomica è essenziale per rispondere a questa seconda domanda, perché 
l’approccio utilizzato inizialmente comporta l’identificazione della posizione del 
gene di interesse rispetto ad altri geni o caratteristiche di sequenza di cui sono già 
note le posizioni sulla mappa. Questo processo è stato e continua ad essere la chia-
ve per l’identificazione di geni responsabili di malattie umane come la fibrosi cisti-
ca e il cancro al seno. Metodi simili sono usati per identificare gruppi di geni, pos-
sibilmente dispersi nel genoma, che non causano direttamente una malattia ma 
conferiscono diversi gradi di suscettibilità a quella malattia. Un passo successivo 
consiste in metodi usati per identificare loci di caratteri quantitativi (QTL, Quan-
titative Trait Loci), che sono regioni di un genoma, ognuna possibilmente conte-
nente diversi geni, che controllano tratti variabili come la produttività della carne 
negli animali da allevamento e la resistenza ai parassiti nelle piante coltivate.

L’informazione fornita da una mappa genomica sulle posizioni dei geni e i 
QTL che controllano caratteri commercialmente importanti nelle piante colti-
vate sono anche utilizzate nei programmi di miglioramento genetico finalizzati 
allo sviluppo di nuove varietà con proprietà agricole ottimizzate. Generalmente 
questi programmi di coltivazione generano migliaia di piantine, le cui precise 
caratteristiche biologiche sono sconosciute a causa della casualità del processo 
di ereditarietà. Una piantina potrebbe combinare le migliori caratteristiche dei 
due genitori e potenzialmente rappresentare una nuova importante varietà, o 
potrebbe combinare le proprietà meno utili di entrambi i genitori e non essere di 
valore commerciale. Molti caratteri di interesse per i coltivatori vengono mostrati 
verso la fine del ciclo vitale delle piante – per esempio la produzione di semi 
o di frutti – che possono essere dosati solo crescendo ogni pianticella fino alla 
maturità. Ciò richiede tempo e uno spazio per la crescita di grandi dimensioni. 
Vedremo nella Sezione 18.4 in che modo il metodo definito selezione assistita 
da marcatori consente di utilizzare lo screening del DNA per identificare pian-
tine che possiedono una caratteristica benefica, affinché queste ultime possano 
essere mantenute e quelle che invece presentano caratteristiche meno interes-
santi possano essere scartate. La selezione assistita da marcatori è possibile solo 
se è disponibile una mappa genomica. Se una mappa è disponibile, allora può 
essere eseguita con successo anche se la sequenza completa del genoma è scono-
sciuta, come nel caso delle colture dell’orzo e del grano.
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3.2 MARCATORI PER LA MAPPATURA GENETICA
Come per qualsiasi tipo di mappa, una mappa genetica deve mostrare le posizioni 
di caratteristiche particolari. Su una mappa geografica questi marcatori sono rap-
presentati da elementi riconoscibili del paesaggio come fiumi, strade e costruzio-
ni. Quali marcatori possiamo usare in un “paesaggio” genetico?

I geni sono stati i primi marcatori da utilizzare

Le prime mappe genetiche, costruite nei primi decenni del XX secolo per organi-
smi come il moscerino della frutta, usavano i geni come marcatori genetici. Per 
essere utile nell’analisi genetica, una caratteristica ereditaria deve esistere in al-
meno due forme alternative o alleli, che specificano ciascuno un fenotipo diver-
so, come, ad esempio, i fusti alti o bassi delle piante di pisello originariamente 
studiate da Gregor Mendel. Inizialmente, i soli geni che potevano essere studiati 
erano quelli che specificavano fenotipi distinguibili ad un esame visivo. Così, per 
esempio, le prime mappe del moscerino della frutta mostravano la posizione dei 
geni per il colore del corpo, per il colore degli occhi, per la forma delle ali e simili: 
tutti fenotipi visibili semplicemente a occhio nudo o con un microscopio a bassa 
potenza. All’inizio questo approccio era adeguato, ma fu presto chiaro ai genetisti 
che esistevano solo un numero limitato di fenotipi visibili la cui ereditarietà po-
tesse essere studiata e che in molti casi l’analisi era resa più difficoltosa dal fatto 
che più di un gene regola un singolo fenotipo. Per esempio, fino al 1922 erano 
stati mappati più di 50 geni sui quattro cromosomi del moscerino della frutta, ma 
nove di questi geni codificavano per il colore degli occhi. I genetisti che hanno 
studiato successivamente il moscerino della frutta hanno dovuto imparare a di-
stinguere occhi di colore rosso, rosso pallido, vermiglio, granata, garofano, can-
nella, rubino, seppia, scarlatto, rosa, rosso cardinale, bordeaux, viola e marrone. 
Per ampliare le mappe geniche sarebbe stato necessario identificare caratteristi-
che più distintive e meno complesse di quelle visive.

La soluzione fu quella di utilizzare la biochimica per distinguere i fenotipi. Ciò 
si è dimostrato particolarmente importante per due tipi di organismi: i microrga-
nismi e l’uomo. I microrganismi, come i batteri e i lieviti, hanno pochissime carat-
teristiche visibili, quindi la loro mappatura genica si deve basare su fenotipi bio-
chimici come quelli riportati nella Tabella 3.1. Nel caso dell’uomo è possibile 
sfruttare caratteristiche visibili, ma sin dagli anni ’20 del secolo scorso gli studi 
sulla variazione genetica umana sono stati basati ampiamente su fenotipi biochi-
mici evidenziabili tramite tipizzazione del sangue. Questi fenotipi includono non 
solo i gruppi sanguigni, come il sistema ABO, ma anche le varianti delle proteine 
del siero e le proteine del sistema immunitario come gli antigeni leucocitari uma-
ni (il sistema HLA, Human Leukocyte Antigen). Un vantaggio sostanziale di que-
sti marcatori è che molti dei geni importanti hanno alleli multipli. Per esempio, il 
gene HLA-DRB1 ha oltre 1800 alleli e HLA-B ne ha 4200. Ciò è molto importante 
per il modo in cui viene realizzata la mappatura genica nell’uomo (Sezione 3.4). 

TABELLA 3.1 TIPICI MARCATORI BIOCHIMICI USATI PER L’ANALISI GENETICA 

DI SACCHAROMYCES CEREVISIAE

Marcatore Fenotipo Metodo con cui si identificano le cellule che contengono 

il marcatore

ADE2 Richiede adenina Cresce solo se è presente adenina nel mezzo di coltura

CAN1 Resistente alla canavanina Cresce in presenza di canavanina

CUP1 Resistente al rame Cresce in presenza di rame

CYH1 Resistente alla cicloesimmide Cresce in presenza di cicloesimmide

LEU2 Richiede leucina Cresce solo se è presente la leucina nel mezzo di 

coltura

SUC2 Capace di fermentare il 

saccarosio

Cresce se il saccarosio è l’unico carboidrato presente 

nel mezzo di coltura

URA3 Richiede uracile Cresce solo se l’uracile è presente nel mezzo di coltura
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Piuttosto che pianificare esperimenti in cui si effettuano incroci mirati, che è la 
procedura normalmente adottata in organismi sperimentali quali il moscerino 
della frutta e il topo, i dati sulla ereditarietà dei geni nell’uomo devono essere de-
dotti dall’esame dei fenotipi dei membri di famiglie in cui in cui i genitori si sono 
uniti in matrimonio per motivi personali e non per convenienza dei genetisti. Se 
tutti i membri di una famiglia presentano lo stesso allele per il gene di interesse, 
non sarà possibile ottenere alcuna informazione utile. Per la mappatura genica è 
quindi necessario individuare famiglie in cui i genitori abbiano casualmente alle-
li diversi. Questa evenienza naturalmente è molto più probabile se il gene che si 
sta studiando presenta 1800 alleli invece di 2.

RFLP e SSLP sono esempi di marcatori di DNA

I geni sono marcatori molto utili ma non ideali. Il problema, in particolare con 
i genomi più grandi come quelli dei vertebrati e delle piante da fiore, è che una 
mappa basata unicamente sui geni non è molto dettagliata. Questo accadrebbe 
anche se venisse mappato ogni singolo gene perché, nella maggior parte dei 
genomi eucariotici, i geni sono spaziati gli uni dagli altri da ampie interruzioni. 
Il problema viene reso ancora più complicato dal fatto che solo una frazione del 
numero totale dei geni è presente in forme alleliche che possano essere distinte 
in modo semplice. Le mappe geniche non sono quindi molto dettagliate e si ha 
bisogno di altri tipi di marcatori.

Caratteristiche di sequenza mappate, diverse dai geni, sono definite mar-
catori di DNA. Come nel caso dei marcatori genici, un marcatore di DNA, per 
essere utile, deve essere presente in almeno due forme alleliche. Due esempi di 
marcatori del DNA sono le sequenze chiamate polimorfismi della lunghezza 
dei frammenti di restrizione (RFLP, Restriction Fragment Length Polymor- 
ph isms) e i polimorfismi della lunghezza di sequenze semplici (SSLP, Simple 
Sequence Length Polymorphisms).

I primi marcatori di DNA studiati sono stati gli RFLP. Si ricordi che gli enzimi 
di restrizione tagliano le molecole di DNA a livello di sequenze di riconoscimento 
specifiche (Sezione 2.1). Per specificità di sequenza si intende che il trattamento 
di una molecola di DNA con un enzima di restrizione dovrebbe produrre sempre 
lo stesso insieme di frammenti. Ciò non è sempre vero nel caso del DNA genomi-
co poiché alcuni siti di restrizione sono polimorfici, cioè esistono in due forme 
alleliche diverse, di cui una con la sequenza di riconoscimento corretta, quindi in 
grado di essere tagliata dall’enzima, e l’altra con un’alterazione che non ne per-
mette il riconoscimento. Questa alterazione della sequenza ha come risultato il 
fatto che i due frammenti di restrizione adiacenti resteranno uniti dopo il tratta-
mento con l’enzima, producendo un polimorfismo di lunghezza (Figura 3.4). 
Questo è un RFLP e la sua posizione sulla mappa genomica può essere dedotta 
seguendo l’ereditarietà dei suoi alleli, esattamente come quando vengono utiliz-
zati i geni come marcatori. Si pensa che ci siano circa 105 RFLP in un genoma di 
mammifero.

Nel caso di molecole di DNA di piccole dimensioni, si possono distinguere i 
due alleli di un RFLP semplicemente tagliando con l’enzima di restrizione appro-
priato e identificando le dimensioni dei frammenti risultanti mediante elettrofo-
resi su gel di agarosio. Caratterizzare un RFLP nel DNA genomico invece è più 
difficile. Un enzima come EcoRI, che riconosce una sequenza di sei nucleotidi, 
dovrebbe tagliare circa una volta ogni 46 = 4096 bp e così genererebbe quasi 
800.000 frammenti se usato sul DNA umano. Dopo la separazione mediante elet-
troforesi su gel di agarosio, questi 800.000 frammenti producono una unica scia 
(smear) di DNA e gli RFLP non si possono distinguere gli uni dagli altri. L’ibrida-
zione Southern fornirebbe un modo per visualizzare gli RFLP (Figura 3.5A) utiliz-
zando una sonda che comprende il sito di restrizione polimorfico. Questo però è 
un processo lungo ed è difficile esaminare più di circa 12 campioni di DNA in un 
singolo esperimento. La caratterizzazione (tipizzazione) RFLP è una delle tante 
procedure che sono state rese più semplici da quando è stata inventata la PCR. 
Mediante PCR, infatti un RFLP può essere caratterizzato in un campione di DNA 
genomico senza la necessità di tagliare quel DNA con l’enzima di restrizione. I 
primer per la PCR invece sono progettati in modo da appaiarsi ai due lati del sito 
polimorfico e l’RFLP viene rivelato trattando il frammento amplificato con l’enzi-
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4 frammenti 3 frammenti

Sito di restrizione polimor!co

DNA

(allele 2)

Aggiunta della endonucleasi di restrizione

Figura 3.4  Polimorfismo della 
lunghezza di un frammento di 
restrizione (RFLP). La molecola di DNA 
sulla sinistra ha un sito di restrizione 
polimorfico (indicato con l’asterisco) che 
non è presente nella molecola mostrata a 
destra. L’RFLP è rivelato dopo trattamento 
con l’enzima di restrizione perché una 
delle molecole viene tagliata in quattro 
frammenti mentre l’altra in tre.



60 Capitolo 3: Mappatura dei genomi

ma di restrizione (Figura 3.5B) e poi analizzandone un campione su gel di agaro-
sio. Reazioni di PCR multiple possono essere facilmente allestite in piastre multi-
pozzetto, in modo da analizzare fino a 96 campioni di DNA in un’unica analisi.

Gli SSLP sono piuttosto diversi rispetto agli RFLP. Gli SSLP sono insiemi di se-
quenze ripetute che mostrano variazioni di lunghezza e i cui differenti alleli con-
tengono numeri diversi delle unità ripetute (Figura 3.6A). Diversamente dagli 
RFLP, gli SSLP possono essere multiallelici poiché ogni SSLP può avere diverse  
varianti di lunghezza. Esistono due tipi di SSLP:

• I minisatelliti, conosciuti anche come ripetizioni in tandem a numero 
variabile (VNTR, Variable Number of Tandem Repeats), in cui la lun-
ghezza dell’unità ripetuta è massimo 25 bp.

• I microsatelliti, o ripetizioni in tandem semplici (STR, Short Tandem 
Repeats), le cui ripetizioni sono più corte, solitamente 13 bp o meno.

I microsatelliti sono più usati dei minisatelliti come marcatori di DNA, per 
due motivi. Innanzitutto, i minisatelliti non sono distribuiti uniformemente nel 
genoma, bensì tendono ad essere localizzati più frequentemente nelle regioni 
telomeriche alle estremità dei cromosomi. In termini geografici, questo equivale 
a cercare di utilizzare la mappa delle posizioni dei fari marini per orientarsi su 
un’isola. I microsatelliti sono, più vantaggiosamente, dispersi in tutto il genoma. 
In secondo luogo, il modo più rapido per trovare un polimorfismo di lunghezza è 
tramite la PCR, ma la caratterizzazione mediante PCR è molto più veloce e affi-
dabile per sequenze di lunghezza inferiore a 300 bp. La maggior parte degli alleli 
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Figura 3.5  Due metodi per individuare 
un RFLP. Gli RFLP possono essere 
individuati mediante ibridazione Southern. 
Il DNA viene digerito con l’enzima di 
restrizione appropriato e successivamente 
separato su gel di agarosio. L’insieme dei 
frammenti di restrizione viene trasferito 
su una membrana di nylon e ibridato 
con una regione di DNA che contiene il 
sito di restrizione polimorfico. Se il sito è 
assente, viene rivelato un solo frammento 
di restrizione (corsia 2); se il sito è presente, 
vengono rivelati due frammenti (corsia 3). 
(B) L’RFLP può essere anche caratterizzato 
mediante PCR, utilizzando primer che 
si appaiano ad entrambi i lati del sito di 
restrizione polimorfico. Dopo la PCR, i 
prodotti vengono trattati con l’enzima di 
restrizione appropriato e successivamente 
analizzati attraverso elettroforesi su gel 
d’agarosio. Se il sito è assente, si vede una 
sola banda su gel d’agarosio (corsia 2); se il 
sito è presente, si osserveranno due bande 
(corsia 3).
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Figura 3.6 SSLP e modo in cui essi sono individuati. (A) Due alleli di un SSLP. 
Questo particolare esempio è una breve ripetizione in tandem (STR), chiamata anche 
microsatellite. Il motivo “GA” è ripetuto tre volte nell’allele 1 e cinque volte nell’allele 2. 
(B) Caratterizzazione di un STR mediante PCR. L’STR e parte della sequenza circostante 
vengono amplificate e la lunghezza dei prodotti viene determinata mediante 
elettroforesi su gel di agarosio o elettroforesi capillare. Nel gel di agarosio il pozzetto 1 
contiene il prodotto della PCR e il pozzetto 2 contiene marcatori di DNA che mostrano 
le dimensioni delle bande che si ottengono in seguito alla PCR sui due alleli. La 
dimensione della banda nella corsia 1 corrisponde alla taglia maggiore dei marcatori 
di DNA, indicando che il DNA analizzato conteneva l’allele 2. I risultati dell’elettroforesi 
capillare vengono visualizzati come elettroferogramma, dove la posizione del picco 
blu indica la dimensione del prodotto di PCR. L’elettroferogramma viene calibrato 
automaticamente rispetto ai marcatori di peso molecolare (picchi rossi), in modo che è 
possibile calcolare con precisione la lunghezza del prodotto di PCR.
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dei minisatelliti è più lunga, poiché le unità ripetute sono piuttosto lunghe e spes-
so ce ne sono molte in un singolo insieme, quindi per evidenziarli sono necessari 
prodotti di PCR lunghi diverse kb. I microsatelliti tipici consistono di 10–30 copie 
di una ripetizione che generalmente non è più lunga di 6 bp e sono quindi ideali 
per l’analisi mediante PCR. Sono presenti 2,86 × 106 microsatelliti con unità ripe-
tute di 2–6 coppie di basi nel genoma umano.

L’allele presente in una STR, quando analizzato mediante PCR, è rivelato dalla 
precisa lunghezza del prodotto di PCR (Figura 3.6B). Le variazioni nella lunghez-
za possono essere visualizzate mediante elettroforesi su gel di agarosio, ma l’elet-
troforesi su gel convenzionale è una procedura difficile da automatizzare e quindi 
non adatta alle analisi su larga scala su cui si basa la ricerca genomica moderna. 
Per lo più, le STR vengono caratterizzate mediante elettroforesi capillare in un 
gel di poliacrilammide. I gel di poliacrilammide hanno pori di dimensioni più 
piccoli e rispetto a quelli dei gel di agarosio e offrono una maggiore precisione 
nella separazione di molecole di diverse lunghezze. La maggior parte dei sistemi 
di elettroforesi capillare utilizza la fluorescenza come metodo di rivelazione, per 
cui un segnale fluorescente viene legato a uno o ad entrambi i primer prima di 
eseguire la PCR. Dopo aver eseguito la PCR, il prodotto ottenuto viene caricato nel 
sistema capillare dove passa attraverso un rivelatore di fluorescenza. Un compu-
ter collegato al rivelatore misura il tempo di percorrenza del prodotto di PCR con-
frontandolo con quello di marcatori a peso molecolare noto, e quindi identifica 
l’esatta lunghezza del prodotto di PCR.

I polimorfismi di un singolo nucleotide sono il tipo più utile 

di marcatore di DNA

Gli RFLP e gli SSLP sono utili in alcuni tipi di ricerca genomica, ma la maggior 
parte dei moderni progetti di mappatura genetica utilizza un diverso tipo di mar-
catore di DNA. Questi sono chiamati polimorfismi di un singolo nucleotide 

(SNP, Single-Nucleotide Polymorphisms). Un SNP è una posizione in un geno-
ma in cui alcuni individui hanno un nucleotide (ad esempio una G) e altri hanno 
un diverso nucleotide (ad es., una C) (Figura 3.7). Ci sono un gran numero di SNP 
in ogni genoma (circa 10 milioni nel genoma umano), alcuni dei quali danno an-
che origine agli RFLP, ma molti di essi non lo fanno perché la sequenza in cui ri-
siedono non è riconosciuta da alcun enzima di restrizione.

Dal momento che in ogni posizione del genoma può essere presente uno 
qualsiasi dei quattro nucleotidi, si potrebbe immaginare che ciascun SNP possa 
avere quattro alleli. Teoricamente è possibile, ma in pratica la maggior parte degli 
SNP esiste in due sole varianti. Questo perché ogni SNP ha origine quando si veri-
fica una mutazione puntiforme (Capitolo 16) nel genoma, che converte un nu-
cleotide in un altro. Se la mutazione avviene nelle cellule riproduttive di un indi-
viduo, allora uno o più discendenti potrebbero ereditare la mutazione e, dopo 
molte generazioni, l’SNP potrebbe essersi fissato nella popolazione. Tuttavia, esi-
stono solo due alleli: la sequenza originale e la versione mutata. Perché si origini 
un terzo allele, nella stessa posizione del genoma deve avvenire una nuova muta-
zione in un altro individuo, e questo individuo e la sua prole si devono riprodurre 
in modo tale da fissare il nuovo allele. Tale situazione non è impossibile, ma è 
improbabile: di conseguenza la grande maggioranza degli SNP è biallelica. Tale 
svantaggio è controbilanciato dall’enorme numero di SNP presenti in ciascun ge-
noma: almeno uno ogni 1000 bp di DNA nella maggior parte degli eucarioti. Gli 
SNP permettono dunque di costruire mappe genomiche molto dettagliate.

La frequenza degli SNP in un genoma indica che questi marcatori hanno as-
sunto notevole importanza nei progetti che utilizzano mappe genomiche per 
identificare geni o QTL che specificano caratteristiche particolari (Sezione 6.4), 
nonché nei programmi di miglioramento delle colture che utilizzano una mappa 
come ausilio alla selezione assistita da marcatori (Sezione 18.4). Queste applica-
zioni hanno portato allo sviluppo di metodi per la caratterizzazione rapida sia di 
singoli SNP sia di grandi gruppi di SNP. Alcuni di questi metodi si basano sull’a-
nalisi di ibridazione di oligonucleotidi. Un oligonucleotide è una corta moleco-
la di DNA a singolo filamento, in genere di lunghezza inferiore ai 50 nucleotidi, 
che viene sintetizzata in provetta. Nelle giuste condizioni, un oligonucleotide for-

… AGTCAGAAATC …

… AGTCACAAATC …

Allele 1

Allele 2

Figura 3.7  Polimorfismo di un singolo 
nucleotide (SNP).
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ma un ibrido con un’altra molecola di DNA solo quando si ha un completo appa-
iamento di basi. Se c’è anche un singolo appaiamento non corretto – una sola 
posizione in cui l’oligonucleotide non forma una coppia di basi – l’ibridazione 
non ha luogo (Figura 3.8). L’ibridazione con un oligonucleotide può quindi di-
scriminare tra i due alleli di un SNP. Tra le varie strategie di analisi sviluppate ba-
sate sull’ibridazione di oligonucleotidi ci sono le seguenti:

• La tecnologia del chip di DNA utilizza un “wafer” di vetro o silicio con un’a-
rea di 2 cm2 o meno su cui sono disposti molti oligonucleotidi diversi che 
formano un array ad alta densità. Il DNA da testare è marcato con un fluo-
roforo e viene posto sulla superficie del chip con una pipetta. L’ibridazione 
viene rilevata esaminando il chip con un microscopio a fluorescenza. 
Le posizioni in cui viene emesso un segnale fluorescente indicano quali 
oligonucleotidi hanno formato ibrido con il DNA in esame (Figura 3.9). 
L’ibridazione richiede una corrispondenza completa tra un oligonucleotide 
e la sua sequenza complementare nel DNA in esame, e così indica quale 
delle due versioni di un SNP è presente nel DNA in esame. Sulla superficie 
del chip sono possibili densità fino a 300.000 oligonucleotidi/cm2, quindi 
un chip di 2 cm2 può analizzare 300.000 SNP in un singolo esperimento, se 
il chip porta gli oligonucleotidi per entrambi gli alleli di ogni SNP.

• Le tecniche di ibridazione in soluzione vengono eseguite nei pozzetti 
di una piastra di microtitolazione, utilizzando un sistema di rivelazione 
in grado di discriminare tra il DNA a singolo filamento non ibridato e il 
DNA a doppio filamento che si forma quando un oligonucleotide si ibrida 
al campione di DNA. Il sistema di rilevazione maggiormente utilizzato si 
basa sullo smorzamento della fluorescenza, che abbiamo già incontrato 
nella Sezione 2.2 come base per il modo in cui una sonda reporter viene 
utilizzata per seguire la formazione del prodotto durante la real-time PCR 
(vedi Figura 2.21). Nella caratterizzazione degli SNP, il colorante è attac-
cato ad un’estremità dell’oligonucleotide e all’altra estremità al compo-
sto che smorza il segnale fluorescente. L’ibridazione tra l’oligonucleotide 
e il DNA in esame è indicata dalla generazione del segnale fluorescente. 
Quando viene utilizzato in questo contesto, la tecnica di smorzamento 
della fluorescenza è a volte chiamata tecnica dei fari molecolari (molecu-

lar beacons).

Altri metodi utilizzano un oligonucleotide in cui il mismatch, cioè la mancata 
corrispondenza, con l’SNP si presenta all’estremità 5  o 3 . In condizioni appro-
priate, un oligonucleotide di questo tipo ibriderà con lo stampo di DNA mante-
nendo una piccola “coda” non appaiata (Figura 3.10A). Questa caratteristica vie-
ne sfruttata in due modi diversi:

• Il saggio di ligazione degli oligonucleotidi (OLA, Oligonucleotide 
Ligation Assay) che utilizza due oligonucleotidi che si appaiano l’uno 
accanto all’altro, con l’estremità 3  di uno di questi oligonucleotidi posi-
zionata esattamente a livello dell’SNP. Questo oligonucleotide si appaierà 
completamente se è presente il giusto SNP nello stampo di DNA e in tal 

Figura 3.8  Caratterizzazione di un SNP mediante l’ibridazione di un 
oligonucleotide. In condizioni molto stringenti di ibridazione, un ibrido stabile 
si forma solo se un oligonucleotide è in grado di formare con il DNA bersaglio 
una struttura con appaiamento di basi completo. L’ibrido non si forma se c’è 
anche un solo appaiamento errato. Per raggiungere questo livello di stringenza, 
la temperatura di incubazione deve essere appena al di sotto della temperatura 
di fusione (Tm) dell’oligonucleotide. A temperature superiori rispetto alla Tm 
anche l’ibrido perfettamente appaiato risulta instabile. A temperature inferiori 
alla Tm di oltre 5°C, anche gli ibridi appaiati male possono essere stabili. La Tm 
dell’oligonucleotide mostrato in figura è di circa 58°C. La Tm (espressa in gradi 
Celsius) viene calcolata con la seguente formula: Tm = (4 × numero di nucleotidi 
G + C) + (2 × numero di nucleotidi A + T). Questa formula fornisce un’indicazione 
approssimativa della Tm per oligonucleotidi di lunghezza compresa tra 15 e  
30 nucleotidi.

CTGGTCGTCAGTCTTTAGTT

GACCAGCAGTCAGAAATCAA

CTGGTCGTCAGTCTTTAGTT

GACCAGCAGTCACAAATCAA

SNP

L’appaiamento di basi
dove c’è un mismatch
non può avvenire

L’ibrido con appaiamento
di basi completo è stabile

DNA bersaglio

Oligonucleotide

L’ibrido con un singolo
mismatched è instabile

Chip di DNA 

Ibridazione
con DNA marcato

Figura 3.9  Caratterizzazione degli 
SNP mediante chip di DNA. Gli 
oligonucleotidi sono immobilizzati 
in un array sulla superficie del chip. 
Il DNA marcato viene aggiunto e le 
posizioni in cui avviene l’ibridazione 
sono determinate da scansione laser o 
microscopia confocale a fluorescenza.
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caso avverrà la ligazione con l’oligonucleotide consecutivo (Figura 3.10B). 
Se il DNA in esame contiene l’altro allele dell’SNP, il nucleotide al 3  della 
sonda oligonucleotidica non potrà appaiarsi allo stampo e la ligazione non 
avviene. L’allele è quindi caratterizzato in base al risultato della ligazione. 
Se è stato testato un singolo SNP, la formazione del prodotto della ligazione 
può essere analizzata semplicemente correndo un campione della rea-
zione in un sistema di elettroforesi capillare, come descritto precedente-
mente per la caratterizzazione degli STR.

• Nel sistema di amplificazione refrattario alle mutazioni o ARMS test 
(Ampli!cation Refractory Mutation System test) l’oligonucleotide sonda 
è uno dei due primer per la PCR. Se il nucleotide al 3  del primer sonda si 
appaia all’SNP, poi può essere esteso dalla Taq polimerasi e la PCR può 
aver luogo, ma in caso contrario, cioé se è presente l’altra versione dell’SNP, 
non si genera alcun prodotto di PCR (Figura 3.10C).

3.3 BASI DELLA MAPPATURA GENETICA
Ora che abbiamo identificato una serie di marcatori con cui costruire una mappa 
genetica, possiamo dedicarci alla descrizione delle tecniche di mappatura. Que-
ste tecniche si basano sull’associazione genetica, che a sua volta deriva dalle 
scoperte effettuate da Gregor Mendel nella metà del XIX secolo.

Principi dell’ereditarietà e scoperta dell’associazione

La mappatura genetica si basa sui principi dell’ereditarietà descritti per la prima 
volta da Gregor Mendel nel 1865. Dai risultati dei suoi esperimenti di incrocio con 
i piselli, Mendel concluse che ogni pianta di pisello possiede due alleli per ogni 
gene, ma mostra un solo fenotipo. È facile capire se la pianta è un linea pura, o 
omozigote, per una caratteristica particolare, perché in tal caso possiede due al-
leli identici e ne mostra il fenotipo relativo (Figura 3.11A). Mendel dimostrò che, 

TCGGTCGCTGGTCGTCAGTC

AGCCAGCGACCAGCAGTCAG

TCGGTCGCTGGTCGTCAGT

AGCCAGCGACCAGCAGTCAC

C

(A)  Ibridazione con un oligonucleotide
che porta un mismatch terminale

Ibrido completamente
appaiato

Oligonucleotide

DNA bersaglio

Oligonucleotide

SNP

Si ottiene il prodotto di PCR

(B)  Saggio di ligazione dell’oligonucleotide (OLA) (C)  ARMS test

In assenza di mismatch In assenza di mismatch

La ligazione avviene
5‘ 3‘

Ibrido con coda non 
appaiata

5‘ 3‘

Non si ottiene il prodotto di PCR

Mismatch Mismatch

Mancata ligazione

DNA bersaglio

DNA

DNA

Figura 3.10  Metodi per caratterizzare un SNP.  (A) In condizioni appropriate, un oligonucleotide il cui mismatch è localizzato ad una delle due 
estremità (5  o 3 ) ibriderà con il DNA stampo mantenendo una piccola coda non appaiata. (B) Caratterizzazione di un SNP mediante il saggio di 
ligazione degli oligonucleotidi (OLA). (C) ARMS test.

(A)  Autofecondazione di linee pure di piante
(A)  di piselli

(B)  Incrocio tra due linee pure

Parentali

Generazione F1

Generazione F1

Generazione F2

Fiori viola
VV

Fiori viola
VW

Fiori bianchi
WW

Fiori viola
VV

Fiori bianchi
WW

Parentali

Figura 3.11  Omozigosi ed eterozigosi. Mendel studiò sette coppie di caratteri 
alternativi nelle piante di pisello, una delle quali aveva i fiori di colore viola e l’altra 
bianco, come qui mostrato. (A) Linee pure di piante che si autofecondano danno 
sempre origine a fiori del colore parentale. Queste piante sono omozigoti, cioé 
posseggono una coppia di alleli identici, indicata da VV per i fiori viola e WW per i fiori 
bianchi. (B) Quando le due linee pure vengono incrociate tra loro, si osserva uno solo 
dei due fenotipi nella generazione F1. Mendel dedusse che il genotipo delle piante 
F1 era VW, per cui V era l’allele dominante e W era l’allele recessivo.
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se due linee pure di piante con fenotipi diversi vengono incrociate, tutta la proge-
nie (la generazione F1) ha lo stesso fenotipo. Queste piante F1 devono essere ete-
rozigoti, nel senso che possiedono due diversi alleli, uno per ciascun fenotipo, 
ereditati rispettivamente dalla madre e dal padre. Mendel postulò che in questa 
condizione eterozigote un allele annulla gli effetti dell’altro. Mendel quindi de-
scrisse il fenotipo espresso dalle piante F1 come dominante sul secondo, detto 
recessivo (Figura 3.11B).

Per la coppia di alleli studiati da Mendel, questa interpretazione è totalmente 
corretta, ma noi ora sappiamo che la semplice regola dominante-recessivo può 
essere complicata da situazioni che lui non riscontrò. Queste includono:

• La dominanza incompleta, che si verifica quando il fenotipo eterozigote 
è intermedio tra le due forme omozigoti. Il colore del fiore in piante come 
i garofani (ma non nei piselli) ne è un esempio. Se i garofani rossi vengono 
incrociati con quelli bianchi, gli eterozigoti F1 non sono nè bianchi nè rossi, 
ma rosa (Figura 3.12A).

• La codominanza, in cui la forma eterozigote mostra entrambi i fenotipi 
omozigoti. I gruppi sanguigni umani forniscono diversi esempi di codo-
minanza. Per esempio, le due forme omozigoti della serie MN sono M e N 
e tali individui sintetizzano rispettivamente la glicoproteina ematica M o 
N. Gli eterozigoti invece sintetizzano entrambe le glicoproteine e vengono 
definiti MN (Figura 3.12B).

Oltre a scoprire la dominanza e la recessività, Mendel effettuò ulteriori incroci, 
che gli permisero di stabilire le due leggi della Genetica. La prima legge stabilisce 
che gli alleli segregano in modo casuale. In altre parole, se gli alleli parentali sono 
A e a, allora un membro della generazione F1 ha le stesse probabilità di ereditare 
A o a. La seconda legge afferma che le coppie di alleli segregano in maniera indi-
pendente, quindi l’ereditarietà degli alleli del gene A è indipendente da quella de-
gli alleli del gene B. Grazie a queste leggi, i prodotti degli incroci genetici sono 
prevedibili (Figura 3.13).

Quando il lavoro di Mendel è stato riscoperto nel 1900, la sua seconda legge ha 
preoccupato i primi genetisti perché si comprese presto che i geni sono localizza-
ti sui cromosomi e che tutti gli organismi hanno molti più geni che cromosomi. I 
cromosomi vengono ereditati come unità intere, quindi si riteneva ragionevole 
che gli alleli di alcune coppie di geni venissero ereditati insieme poiché si trovava-

(A)  Dominanza incompleta

(B)  Codominanza

Generazione F1
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Genotipi F1
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Figura 3.12  Due tipi di interazione 
allelica non affrontate da Mendel. (A) 
Dominanza incompleta del colore dei fiori 
nei garofani. (B) Codominanza degli alleli 
dei gruppi sanguigni M e N.

Figura 3.13  Le leggi di Mendel hanno permesso di predire i risultati degli incroci genetici. 
Sono mostrati due incroci con i risultati attesi. In un incrocio monoibrido, seguiamo gli alleli di 
un singolo gene, in questo caso l’allele T per piante di pisello alte e l’allele t per piante di pisello 
basse. T è dominante, t è recessivo. Il quadrato di Punnet mostra i genotipi e i fenotipi attesi nella 
generazione F1 in base alla prima legge di Mendel, secondo cui gli alleli segregano in maniera 
casuale. Quando Mendel eseguì questo incrocio ottenne 787 piante di pisello alte e 277 piante 
basse, un rapporto di 2,84:1. Nell’incrocio diibrido, vengono seguiti due geni. Il secondo gene 
determina la forma dei piselli; gli alleli sono R (rotondo, l’allele dominante) e r (rugoso, l’allele 
recessivo). I genotipi e i fenotipi mostrati sono quelli attesi in base alla prima e alla seconda 
Legge di Mendel; quest’ultima stabilisce che coppie di alleli segregano indipendentemente l’uno 
dall’altro.
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no sullo stesso cromosoma (Figura 3.14). Questo è il principio dell’associazione 
genetica, che si dimostrò presto corretto sebbene i risultati non si rivelarono esat-
tamente come ci si aspettava. L’associazione completa che era stata ipotizzata tra 
numerose coppie di geni non si riscontrò. Le coppie di geni venivano ereditate in 
maniera indipendente, come ci si aspettava da geni presenti su cromosomi diver-
si, oppure, quando mostravano associazione, questa era solamente parziale: a 
volte venivano ereditati assieme e altre volte no (Figura 3.15). La soluzione di 
questa contraddizione tra predizione e osservazione ha rappresentato lo stadio 
critico nello sviluppo delle tecniche di mappatura genetica.

Il comportamento dei cromosomi durante la meiosi 

spiega l’associazione genica parziale

La scoperta decisiva fu fatta da Thomas Hunt Morgan, che correlò l’associazione 
parziale al comportamento dei cromosomi quando il nucleo di una cellula è in 
divisione. I citologi, alla fine del XIX secolo, avevano distinto due tipi di divisione 
nucleare: la mitosi e la meiosi. La mitosi è più comune, perché è il processo con 
cui il nucleo diploide di una cellula somatica si divide per formare due nuclei figli, 
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Se i geni non sono associati
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Figura 3.14  I geni presenti sullo stesso 
cromosoma dovrebbero mostrare 
associazione. I geni A e B sono sullo 
stesso cromosoma e dovrebbero quindi 
essere ereditati insieme. La seconda 
legge di Mendel non si può applicare 
all’ereditarietà di A e B. Il gene C si trova 
su un altro cromosoma e quindi la 
seconda legge di Mendel è valida per 
l’ereditarietà di A e C, o di B e C. Mendel 
non scoprì l’associazione dal momento 
che i sette geni che aveva studiato 
erano ognuno su un cromosoma 
diverso delle piante di pisello.

Figura 3.15  Associazione parziale. L’associazione parziale è stata scoperta all’inizio del XX 
secolo. L’incrocio qui mostrato è stato effettuato da Bateson, Saunders e Punnett nel 1905 su piante 
di piselli dolci. L’incrocio parentale dà il tipico risultato diibrido (Figura 3.13) in cui tutte le piante 
F1 mostrano lo stesso fenotipo, indicando che gli alleli dominanti sono fiori viola e grani pollinici 
lunghi. L’incrocio della F1 dà risultati inaspettati poiché la progenie non mostra né il rapporto 
9:3:3:1 (atteso nel caso di geni presenti su cromosomi diversi), né quello 3:1 (atteso nel caso di geni 
completamente associati). Un rapporto insolito è tipico della associazione parziale.




