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Prefazione
Questo volume è il risultato di una esperienza di alcuni decenni nell’inse-

gnamento della Fisica in Corsi di indirizzo sanitario. Nel volume si è cercato di 
soddisfare le seguenti esigenze, ritenute fondamentali e prioritarie:

•	 la funzione della Fisica negli studi di indirizzo sanitario deve essere prin-
cipalmente di carattere formativo e metodologico, pur non ignorando 
l’aspetto informativo;

•	 è utile svolgere una certa integrazione e armonizzazione della Fisica con 
altri argomenti facenti parte più specificamente dei curricula degli studi 
sanitari;

•	 bisogna mettere in risalto l’aspetto strumentale che deriva da molteplici 
fenomeni fisici, in particolare con scopi diagnostici e terapeutici;

•	 un testo di Fisica sufficientemente rigoroso e completo diventa un utile 
riferimento di base nello studio di corsi collaterali di insegnamento, 
nel proseguimento degli studi in corsi magistrali e nell’attività futura in 
ambiente sanitario.

Per conciliare l’esigenza di un corso metodologico e formativo con l’integra-
zione della Fisica nel curriculum di studi biosanitari (compreso l’ultimo inse-
rito: la sicurezza delle persone e dell’ambiente), si è scelto di alternare capitoli 
che riportano i concetti fondamentali della Fisica (con qualche sporadica appli-
cazione medico-biologica) con capitoli dedicati interamente alle applicazioni 
di tali concetti in campo biomedico e con alcuni accenni in campo ambientale. 
Queste applicazioni non sono svolte con la pretesa di essere complete ed esau-
rienti, ma piuttosto con l’intento di fornire esempi di una trattazione scientifi-
camente rigorosa, anche se necessariamente ridotta ad una forma schematica 
ed essenziale, di alcuni complessi problemi medici e biologici. Nell’operare in 
questo modo si sono utilizzate il più possibile figure e illustrazioni commentate 
nel testo o nelle loro didascalie e si sono chiaramente distinte le applicazioni di 
tipo sanitario e/o ambientale. 

Per mantenere il necessario rigore nella trattazione si è fatto uso di alcune 
nozioni di Analisi matematica riguardanti il calcolo vettoriale e lo studio di al-
cune funzioni in termini semplificati, nozioni che dovrebbero essere impartite 
nella Scuola secondaria. 

Al fine di proporre un testo completo, che possa essere utile quale manuale 
di riferimento nel prosieguo degli studi e nell’attività successiva, sono stati svolti 
tutti gli argomenti della Fisica classica, con cenni di Fisica atomica, molecolare 
e nucleare, ed è stato aggiunto un ultimo capitolo in cui vengono descritte la ra-
dioattività naturale e le radiazioni ionizzanti impiegate nelle strutture sanitarie 
(radiodiagnostica, radioterapia) con le conseguenti misure di radioprotezione 
da adottare. 

Scorrendo l’indice si può osservare che la Meccanica viene applicata ai siste-
mi biologici sia per quanto concerne le strutture solide (Biomeccanica) sia per 
quanto riguarda il movimento dei liquidi, per i quali la complessità dei fenome-
ni ha indotto gli Autori ad applicare il metodo delle approssimazioni successi-
ve per giungere a una loro (quasi) esauriente comprensione. Successivamente 
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vengono trattati i fenomeni in cui interviene il calore (Termodinamica dei si-
stemi biologici) e gli scambi di sostanze attraverso le membrane biologiche. 
Dopo aver trattato la Fisica dei fenomeni ondulatori in generale, sono svolte le 
loro applicazioni nel caso delle onde meccaniche (suono) e, dopo aver intro-
dotto le nozioni relative ai fenomeni elettrici e magnetici, delle onde elettroma-
gnetiche. In seguito vengono trattate la struttura della materia e le radiazioni 
corpuscolari e nei capitoli successivi le conseguenze delle radiazioni sull’uomo 
con le relative applicazioni diagnostiche, terapeutiche e tecnologiche in gene-
rale, aggiornate ai più recenti sviluppi tecnologici.

A conclusione, si può osservare che, non essendo realistico che un corso di 
insegnamento possa coinvolgere tutta la materia sviluppata in questo testo, si è 
cercato di fornire uno strumento della massima flessibilità, sia per il docente, 
che può ritagliare un programma del corso con la scelta di argomenti e appli-
cazioni ritenute più opportune, sia per lo studente, che può impiegare il testo 
come un utile manuale di riferimento per altri corsi e per la sua carriera futura.

D. Scannicchio
Ordinario di Fisica Medica

Corso di Laurea in Medicina e Chirurgia
Università degli Studi di Pavia

E. Giroletti
Esperto qualificato di 3° grado  
ed Esperto in Fisica Medica

Docente di Fisica Medica 
Corso di Laurea in Scienze Infermieristiche

Università degli Studi di Pavia
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Materiale di supporto per i docenti

I docenti che utilizzano il testo a scopo didattico possono scaricare sul sito
www.edises.it, previa registrazione all’area docenti, le immagini del libro in for-
mato PowerPoint.

IMPORTANTE: Si invita il lettore a prendere visione preliminare delle in-
dicazioni utili alla lettura riportate in basso.

Prefazione

INDICAZIONI UTILI ALLA LETTURA:

•	 Il testo si articola in capitoli differenziati con indicatore quadrato verde per le nozioni di Fisica 
di base e rosso per le applicazioni medico-biologiche; 

•	 le espressioni formali rilevanti o conclusive sono riportate in riquadri con sfondo 
arancione;

•	 gli Esempi con calcoli numerici sono separati dalla trattazione e introdotti alla fine 
dell’argomento trattato nel paragrafo;

•	 alla fine di ogni capitolo è riportato un riepilogo delle grandezze fisiche (e loro 
unità di misura) introdotte nel capitolo;

•	 alla fine del capitolo sono proposti quesiti e problemi (il cui risultato è riportato in 
Appendice);

•	 il testo, le figure e le didascalie adottano la seguente simbologia:

1.	 le grandezze vettoriali sono riportate in grassetto (grassetto corsivo solo per 
posizione, spostamento (o distanze), velocità e accelerazione);

2.	 le grandezze scalari o il modulo di vettori sono riportati con carattere normale 
corsivo.

http://www.edises.it/
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I fondamenti della Meccanica
Parte III:  Elementi di Statica e di Dinamica  

rotatoria. Corpi deformabili e attrito.
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INTRODUZIONE

In questo capitolo vengono svolte le principali nozioni di Statica (dei corpi 
rigidi e dei corpi deformabili), indispensabili per stabilire lo stato di equilibrio 
delle articolazioni e le modalità di frattura delle strutture ossee, e i principali 
aspetti della Dinamica rotatoria, che, in aggiunta alla Dinamica traslatoria 
(trattata nei capitoli precedenti), permette di comprendere alcuni fenomeni 
biologici come le fratture e la deambulazione (Capitolo 5). 

È opportuno rilevare che la Dinamica rotatoria diventa importante solo 
in determinati casi, poiché le energie di rotazione sono trascurabili rispetto a 
quelle di traslazione: infatti è molto più facile porre in rotazione un corpo che 
porlo in moto di traslazione, come risulta evidente dai moti dimostrativi dei 
corpi in assenza di peso sulla Stazione Spaziale Internazionale.

Infine, come già scritto nell’introduzione del primo capitolo, questo 
capitolo termina svolgendo alcune nozioni relative ai corpi deformabili e alle 
forze di attrito, nozioni indispensabili alla comprensione delle applicazioni 
della Meccanica ai sistemi biologici (Capitolo 5).

 EQUILIBRIO DI UN CORPO RIGIDO

Prima di considerare le condizioni di equilibrio dei corpi, introduciamo 
la definizione di momento di una forza rispetto ad un punto O. Consideriamo un 
corpo rigido, cioè che non si possa deformare, quale che sia l’entità delle forze 
che agiscono su di esso, sul quale agisce una forza F applicata nel punto A e un 
punto O qualsiasi, come mostrato in Figura 4.1. Si definisce momento M di una 

forza rispetto al punto O il prodotto vettoriale:

 M = AO
—

F7  (4.1)

dove OA  è il vettore distanza diretto da O ad A. Il modulo del vettore M è 
fornito da:

 
M = F AO

—
sen f = F b

 (4.2)

dove abbiamo indicato con f l’angolo fra i vettori e con b la distanza della retta 
d’azione della forza F dal punto O (Figura 4.1); b prende il nome di braccio 
della forza rispetto al punto O. Dalla definizione di prodotto vettoriale (§1.4a), 

4.1

4.2

f

b

r

A

M

F

90°

O

Momento M della forza F rispetto 
al punto arbitrario O.

Figura 4.1
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osservando la Figura 1.9 e immaginando che il punto O sia fisso e che A sia 
rigidamente collegato ad O, si vede che solo nel caso in cui il momento della 
forza è diverso da zero (cioè b Z 0 e sen f Z 0), la forza tende a produrre 
una rotazione di A intorno ad O. Dalla definizione, il momento di una forza 
si misura nel Sistema Internazionale in newton metro (N m). Il momento di 
una forza, quindi, possiede le stesse dimensioni del lavoro meccanico. Per 
distinguere le due grandezze il lavoro meccanico viene misurato sempre in 
joule (J), il momento di una forza in newton metro (N m).

Limitiamoci ora a considerare le condizioni di equilibrio di un punto materiale 
sottoposto a più forze e di un corpo non puntiforme, ma supposto rigido, sotto 
l’azione di forze ad esso applicate.

La condizione di equilibrio per un punto materiale è che la somma vettoriale di 
tutte le forze ad esso applicate dia luogo ad una risultante R nulla, cioè ad una 
forza di modulo zero1:

 F
1
 + F

2
 + F

3
 + ... = O

i
 F

i
 = R = 0.

 
(4.3)

Nel caso invece che si tratti di un corpo rigido di dimensioni finite, la condizione 
(4.3) non è più sufficiente per assicurare l’equilibrio del corpo, perché questo 
potrebbe compiere dei moti rotatori, come nel caso di due forze uguali ed 
opposte, ma aventi rette d’azione parallele (Figura 4.2). Alla condizione 
(4.3), detta di equilibrio traslazionale, bisogna aggiungere la condizione che la 
risultante M

T
 dei momenti di tutte le forze applicate al corpo, calcolati rispetto 

ad un unico punto O arbitrario (Figura 4.3), sia pure essa nulla (condizione di 
equilibrio rotazionale):

 M
1
 + M

2
 + M

3
 + ... = O

i
 M

i
 = M

T
 = 0.

 
(4.4)

Le due condizioni di equilibrio per i corpi rigidi (4.3) e (4.4) sono relazioni 
vettoriali, le quali, tramite le componenti lungo x, y e z dei vettori, corrispondono 
a 3 + 3 = 6 relazioni scalari, che devono essere contemporaneamente soddisfatte 
per poter garantire l’equilibrio, come si vedrà in un caso particolare nel §5.2.

r
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2 F
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2
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L’equilibrio del corpo è soddisfatto se:
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1

+ F
2

= 0 e M
1

+ M
2

= OA
—

F
1

+ OB
—

F
2

= r
1

F
1

+ r
2 

F
2

= 0.77 7 7

Figura 4.3

1 Il simbolo O
i
 rappresenta la somma di tutti gli elementi di indice i.

Equilibrio traslazionale

Equilibrio rotazionale

O

F
1

F
2

b
1

b
2

Pur essendo soddisfatta la condi-
zione di equilibrio traslazionale 
F

1
 = – F

2
, l’asta possiede un mo-

mento diverso da zero:

M = F
1
b

1
 + F

2
b

2
,

che ne causa la rotazione.

Figura 4.2
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I VINCOLI E LE LEVE

Può accadere che la mobilità di un corpo sia limitata dalla presenza di 
qualche vincolo. I vincoli fissi ideali sono elementi che non si spostano, né si 
deformano sotto l’azione di forze. Ne è un esempio pratico il piano orizzontale 
su cui è poggiato un corpo: la forza peso che agisce sul corpo è bilanciata 
dalla forza di reazione del vincolo, uguale ed opposta, per cui il corpo resta in 
equilibrio (Figura 4.4). Altri esempi sono gli assi di rotazione di pendoli, ruote, 
eliche e così via.

Nel caso particolare in cui il corpo rigido sia vincolato in un punto, le 
condizioni di equilibrio sono semplificate. Infatti la risultante R delle forze 
del corpo potrà essere sempre in teoria equilibrata dalla reazione del vincolo. 
Questo significa semplicemente che, se il corpo è vincolato in un punto, la 
condizione di equilibrio rispetto ad un moto traslatorio è automaticamente 
soddisfatta. Quindi condizione necessaria e sufficiente per l’equilibrio di un 
corpo vincolato in un punto è la sola condizione (4.4) di equilibrio rotazionale.

Se il corpo è invece libero di ruotare intorno ad un asse fisso, condizione 
necessaria e sufficiente per l’equilibrio è che sia nulla la somma vettoriale delle 
proiezioni sull’asse di rotazione dei momenti delle forze applicate al corpo.

Un’asta rigida, chiamata leva, girevole intorno ad un asse perpendicolare 
all’asta stessa, detto fulcro, è il sistema meccanico (o macchina) più semplice 
mediante il quale è possibile fare equilibrio con una forza F

m
, detta motrice, 

applicata a uno dei suoi punti (M), ad un’altra forza F
r
, detta resistente, applicata 

a un altro suo punto (R), come mostrato nelle Figura 4.5. Nella semplice ipotesi 
che le due forze agiscano in un piano perpendicolare al fulcro (Figura 4.5), 
l’equilibrio si ottiene quando i momenti delle due forze sono uguali ed opposti, 
cioè quando:

 b
m
 F

m
 – b

r
 F

r
 = 0,

da cui:

 b
m
 F

m
 – b

r
 F

r
 , (4.5)

dove b
r
 e b

m
 sono rispettivamente i bracci della forza motrice e della forza 

resistente, eseguendo il calcolo dei momenti rispetto al fulcro (il fulcro è il 
punto arbitrario O).

Il rapporto adimensionale:

 G
F

F

b

b
r

m

m

r

= = ,
 

(4.6)

esprime il guadagno meccanico che si può realizzare con la leva.
Come mostrato nelle Figura 4.5, esistono tre tipi di leve a seconda della 

posizione del fulcro rispetto ai punti di applicazione delle forze.
Con le leve del 1° tipo (Figura 4.5a, fulcro intermedio fra R ed M) si può 

avere un guadagno sia maggiore sia minore di uno. La pinza è un esempio di 
leva del primo tipo.

Le leve del 2° tipo (Figura 4.5b, R intermedio fra fulcro ed M) hanno 
un guadagno sempre maggiore di uno (perciò si dicono vantaggiose). Lo 
schiaccianoci o la carriola sono tipici esempi di leva del 2o tipo.

4.3

p = mg

N = –p

Il corpo resta in equilibrio sul pia-
no poiché P + N = 0 e il momento 
di ciascuna forza è nullo (pren-
dendo come punto O arbitrario 
uno dei punti di applicazione di 
N e di P).

Figura 4.4
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Nel caso delle leve del 3° tipo (Figura 4.5c, M intermedio fra fulcro ed R), 
il guadagno G è sempre minore di uno (leve svantaggiose). Ne è un esempio la 
valvola di sicurezza di tipo meccanico mostrata in Figura 4.5c. Vedremo nel §5.3  
alcune applicazioni delle leve al corpo umano.

Un’altra leva del 1° tipo di uso comune è la carrucola fissa (Figura 4.6a), dove 
l’asse di rotazione della carrucola è il fulcro e il suo raggio costituisce i bracci. 
In vista delle applicazioni biologiche riportate nel §5.3 è opportuno ricordare 
che una carrucola in generale è una macchina semplice adatta al sollevamento 
di carichi, mentre la puleggia è un organo di trasmissione costituito da un disco 
che ruota intorno al proprio asse.

Come si vede dalla figura, in assenza di forza di tensione della corda T e di 
forza di attrito carrucola-corda F

A
, la forza peso resistente p e la forza motrice F 

sono uguali e il guadagno (4.6) è uguale a uno. La tensione e la forza di attrito, 
entrambe opposte alla forza motrice F, in realtà non sono nulle e il guadagno 
risulta quindi maggiore di uno. 

La carrucola mobile (Figura 4.6b) permette di amplificare in modo notevole 
la forza muscolare, per sollevare ad esempio elementi architettonici come 
colonne, obelischi e blocchi di marmo e per tirare navi in secca.  

Carrucola e puleggia

(a) Leva del 1° tipo: pinza.  
(b) Leva del 2° tipo: schiaccia-
noci. (c) Leva del 3° tipo: valvola 
di sicurezza. Per completezza, in 
questa e nelle successive figure 
relative alle leve, viene rappresen-
tata la forza di reazione vincolare 
applicata al fulcro che deve soddi-
sfare l’equilibrio traslazionale del 
sistema.

Figura 4.5
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13.1 INTRODUZIONE

In questo capitolo vengono svolti i dettagli della propagazione delle onde 
elastiche nei materiali gassosi, liquidi o solidi, le cui proprietà hanno applicazione 
in Biologia e Medicina nella formazione e nella rivelazione di suoni da parte 
dei sistemi biologici, originando un fondamentale mezzo di comunicazione tra 
gli esseri viventi.  Lo sfruttamento delle onde elastiche inoltre ha comportato in 
Medicina importanti sviluppi tecnologici nei dispositivi diagnostici (ecografie 
e altro) e terapeutici. Come vedremo, la descrizione delle onde elastiche, in 
pratica di carattere meccanico, si avvale delle nozioni di Meccanica svolte nei 
Capitoli 2 e 3.

13.2 IL SUONO

Quando in una regione limitata di un mezzo materiale viene prodotta 
una piccola deformazione di carattere meccanico, si generano delle forze di 
reazione che tendono a riportare le particelle del mezzo nella posizione di 
equilibrio. Se il mezzo materiale è dotato di sufficiente deformabilità, le forze 
di reazione sono di tipo elastico, cioè proporzionali alla deformazione. Le 
particelle del mezzo, essendo sottoposte a forze di richiamo di tipo elastico, si 
muovono quindi di moto armonico intorno alla posizione di equilibrio. Questo 
moto vibratorio, come abbiamo visto nel precedente capitolo, si propaga, a 
causa dell’interazione esistente tra le particelle del mezzo, con una velocità che 
dipende in generale dalla natura del mezzo, dalla direzione di propagazione, 
se questo non è isotropo, e dal carattere trasversale o longitudinale della 
vibrazione. I concetti di suono e di onda sonora sono appunto collegati alla 
possibilità di percepire, mediante l’organo dell’udito, determinate vibrazioni 
elastiche.

Il suono dunque consiste nella propagazione di onde meccaniche elastiche 
nei mezzi materiali. Se il mezzo è un gas o un liquido, le onde sonore sono 
longitudinali. Nei solidi, invece, si possono avere sia onde trasversali (come 
nelle corde musicali), sia onde longitudinali. Infine, alle superfici di interfaccia 
tra mezzi diversi le onde sonore sono sempre trasversali (come negli strumenti 
musicali a percussione).

L’orecchio umano è in grado di percepire solo onde meccaniche elastiche, che 
si propagano nell’aria, la cui frequenza sia compresa tra circa 20 Hz e 2 · 104 Hz.  
È appunto in questo intervallo che le vibrazioni meccaniche sono chiamate 
suoni; al di fuori di questa gamma di frequenze le vibrazioni elastiche non sono 
percepibili dall’orecchio umano, pur avendo sempre le stesse caratteristiche 



164 CAPITOLO 13  Fisica delle onde elastiche e applicazioni biomediche

delle onde sonore propriamente dette. Per frequenze superiori ai 2 · 104 Hz 
le vibrazioni vengono dette ultrasuoni e per frequenze inferiori ai 20 Hz sono 
dette infrasuoni.

Poiché la velocità del suono in aria è di circa 344 m/s,1 la lunghezza delle 
onde udibili dall’orecchio umano è ricavabile dalla relazione (12.2) e risulta 
compresa fra 17.2 m e 1.72 cm. A titolo di confronto, la velocità delle onde 
elastiche nell’acqua è di circa 1450 m/s, mentre nel ferro è di circa 5130 m/s.

È opportuno fare una differenza tra suoni e rumori. Questi ultimi sono 
dovuti a vibrazioni del tutto irregolari alle quali, come tali, manca un preciso 
carattere di periodicità. I suoni invece, se sono puri, sono dovuti a una vibrazione 
armonica semplice, mentre, se sono complessi, derivano da una sovrapposizione 
di onde semplici.

Tipici esempi di suoni complessi sono i suoni musicali e i suoni vocali. 
Mediante l’analisi di Fourier si dimostra che un suono complesso f(t) è 
scomponibile nella somma (12.10) di un numero finito o infinito di componenti 
sinusoidali semplici (armoniche). Un suono generico si può quindi considerare 
come la sovrapposizione di un numero finito o infinito di suoni puri. Il suono 
puro componente di più bassa frequenza viene chiamato primo armonico o 
fondamentale, mentre gli altri prendono il nome di armonici superiori e hanno 
frequenze che sono multiple della frequenza fondamentale.

L’altezza di un suono puro dipende dalla frequenza delle vibrazioni e aumenta 
con questa. In un suono complesso la frequenza fondamentale coincide con la 
periodicità della vibrazione complessa e quindi caratterizza l’altezza del suono.

Il timbro del suono dipende dalla forma della vibrazione e quindi dal numero 
e dall’ampiezza delle vibrazioni armoniche semplici che lo compongono.

L’intensità di un suono, definita in termini generali nel §12.2, dipende 
dall’energia trasportata dall’onda sonora e questa, come visto nel §12.3, dipende 
a sua volta dalla somma dei quadrati delle ampiezze delle vibrazioni semplici 
componenti il suono complesso. Questa ampiezza è massima in prossimità della 
sorgente della vibrazione sonora e diminuisce via via che l’onda si allontana 
da essa, come è evidente nella Figura 12.6, relativa al caso di superfici d’onda 
sferiche. Torneremo su questo punto nel paragrafo 13.3b.

13.3 PROPAGAZIONE DELLE ONDE SONORE

13.3a Pressione sonora

Le forze elastiche che agiscono sulle particelle di gas (atomi o molecole) 
ne causano una compressione e quindi anche rarefazioni successive: dunque 
nei gas la propagazione di una perturbazione oscillatoria dà luogo a zone di 
compressione e zone di rarefazione (Figura 13.1) per cui, dal punto di vista 
meccanico, il suono determina anche una variazione della pressione istantanea, 
la quale per suoni semplici segue una legge di tipo sinusoidale simile alla (12.3):

 Dp(t) = Dpo sen (wt + f) (13.1)

dove Dp = p – pa è la variazione istantanea della pressione p rispetto alla pressione 
atmosferica pa e Dpo è l’ampiezza della perturbazione pressoria.

1 In generale la velocità del suono in aria dipende dalla temperatura.

Figura schematica di zone di com-
pressione e rarefazione. Nella pro-
pagazione di un’onda sonora in 
un gas, le variazioni di pressione 
sono determinate dal moto armo-
nico delle molecole del gas. Que-
sto è provocato dallo stantuffo che 
si muove avanti e indietro di moto 
armonico.

Figura 13.1
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La funzione Dp(t) prende il nome di pressione sonora istantanea. La sua 
variazione sinusoidale, con successive compressioni (pressioni relative positive) 
e rarefazioni (pressioni relative negative), è in grado, come vedremo, di porre 
in vibrazione una membrana (come il timpano). In questi paragrafi vogliamo 
arrivare a individuare una relazione fra l’intensità sonora e la pressione sonora.

Si può dimostrare che si ottiene la seguente relazione fra le relative ampiezze 
di vibrazione:

 Dpo = A w v d, (13.2)

dove A è l’ampiezza della compressione (nel caso sia sinusoidale) (Figura 13.2), 
v è la velocità dell’onda nel gas, d la densità del gas in questione e dove abbiamo 
tenuto conto che l’ampiezza della velocità del moto oscillante è data da A w, 
come visto nella (12.7).

13.3b Intensità sonora e direzionalità del suono

Riprendiamo ora la nozione di intensità I di un’onda sonora, ricordando 
che essa è stata definita nel precedente capitolo e nel §13.2 come la quantità 
di energia che attraversa l’area unitaria nell’unità di tempo (oppure come la 
potenza che attraversa un’area unitaria) e si misura in watt/m2 (W m–2).

Dalla (12.9) possiamo esprimere l’energia totale E trasportata da un’onda 
sonora come:

 E V A AS vd t dm A= = =
1

2

1

2

1

2

222222
,w w wD

 
(13.3)

dove abbiamo sostituito m con l’espressione d × V e dove abbiamo posto  
V = S v Dt, poiché attraverso una superficie di area S, perpendicolare alla 
direzione di propagazione dell’onda, in un intervallo di tempo Dt, passa una 
quantità di energia pari a quella contenuta nel parallelepipedo di base S e 
altezza v Dt (Figura 13.3), essendo v la velocità con cui l’onda si propaga.

Dividendo la (13.3) per S Dt otteniamo l’intensità sonora:

 I
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S t
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(13.4)

che possiamo scrivere anche in termini di ampiezza di pressione, utilizzando 
la (13.2):

 I
p

v d
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(13.5)

da cui:

 p I v d
o

= 2 .D
 

(13.6)

Questa è la relazione esistente tra intensità sonora e ampiezza di pressione 
sonora.

Come abbiamo visto nel capitolo precedente, una vibrazione, come quella 
sonora, emessa da una sorgente puntiforme si propaga in tutte le direzioni per 
onde sferiche. L’intensità è quindi la stessa per tutti i punti che si trovano su una 

Uno stantuffo di sezione S com-
prime l’aria contenuta nel tubo,
che si trova alla pressione atmo-
sferica p

a
, originando un’onda di 

pressione sonora.

Figura 13.2

S

Dx

p
a

D,

Un’onda sonora che si propaga 
attraverso una superficie S con 
velocità v percorre, nell’interval-
lo di tempo Dt, un tratto v Dt. Il 
volume attraversato è pertanto  
S v Dt.

Figura 13.3
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sfera di raggio r e avente per centro la sorgente sonora. Per la conservazione 
dell’energia, segue che l’intensità sonora su una superficie d’onda sferica è 
data da:

 I
E

r t
=

4
2

,
Dp  

(13.7)

per cui I diminuisce con il quadrato della distanza tra sorgente sonora e 
superficie considerata. Ne segue che due punti, distanti r

1
 e r

2
 da una sorgente 

sonora puntiforme, sono investiti rispettivamente da intensità I
1
 e I

2
 date dal 

rapporto:
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La soglia del dolore, per l’orecchio umano, corrisponde a un’intensità sonora 
di circa 1 W/m2, circa uguale all’intensità sonora di un martello pneumatico che 
si trova a 1 metro di distanza dall’orecchio. Dalla (13.8) risulta che, per avere 
sull’orecchio un’intensità sonora pari a un ambiente acusticamente tranquillo 
(10–6 W/m2), occorre trovarsi a una distanza dal martello pneumatico non 
inferiore a 1 km, quando è in funzione.

Un’altra importante caratteristica della propagazione sonora consiste 
nella dipendenza della direzionalità del suono dalla sua frequenza: più elevata 
è la frequenza tanto maggiore è la collimazione dell’onda sonora emessa 
dalla sorgente. Per questo motivo è possibile ottenere immagini ecografiche 
mediante ultrasuoni, cioè suoni ad elevatissima frequenza (1–10 MHz), che si 
propagano praticamente come un sottile raggio sonoro emesso dalla sorgente. 

ESEMPIO13.1 Suono da un altoparlante

L’altoparlante a bassa frequenza di un impianto stereo (Fi-
gura 13.4) ha una superficie di 0.06 m2 e produce 1 W di 
potenza acustica. Calcolare: (1) l’intensità nelle immediate 
vicinanze dell’altoparlante e (2) a quale distanza da esso 
l’intensità misurata risulterebbe di 0.2 W m–2, se l’altopar-
lante emettesse uniformemente i suoni nell’emisfera che 
sta davanti ad esso.

Soluzione   (1) Presso l’altoparlante l’intensità sarà:

I
W

S
= =

W
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−

(2) Alla distanza r dall’altoparlante, l’onda sonora si è pro-
pagata su un’emisfera la cui area è 0.5 (4pr 2) (Figura 13.4) 
e quindi I = W/ 2pr 2, da cui si ottiene il valore di r al quale 
si ha I = 0.2 Wm–2:
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Il suono emesso dall’altoparlante si diffonde nella metà 
frontale della sfera centrata sull’altoparlante.

Figura 13.4
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