




ROBERTO  GRASSI     GIOVANNI  PINTO 

 

NICOLA SERRA 

 

 
 

 

 

 

 

 

SISTEMI PER L’ELABORAZIONE 

DELL’INFORMAZIONE 
 

 

 

 

 

 

 

                                        

 

 

 

 

 

 

 

 

 

Raccolta del materiale didattico elaborato per gli studenti del corso di Laurea in Tecniche Radiologiche per 

Immagini e Radioterapia

corso di

ia 

  



Roberto Grassi, Giovanni Pinto, Nicola Serra 

Sistemi per l’elaborazione dell’informazione 

Copyright © 2016, EdiSES S.r.l. – Napoli 

9   8   7   6   5   4   3   2   1 

2019   2018    2017   2016  

Le cifre sulla destra indicano il numero e l’anno dell’ultima ristampa effettuata 

Copertina realizzata da Lorena Merchione su disegno di Daniele Pinto 

Stampato presso la: Print Sprint srl - Napoli 

Per conto della: 

EdiSES srl – Piazza Dante 89 – 80135 Napoli 

Tel. 081/7441706-07 Fax. 081/7441705 

http://www.edises.it E-mail: info@edises.it

ISBN 978 88 7959 9047

http://www.edises.it/
mailto:info@edises.it


Prefazione PrefaPP

La conoscenza dell’informatica rappresenta un importante bagaglio culturale che ogni studente oggigiorno 

deve possedere. In particolare con l’avvento di Internet, la conoscenza delle reti, della loro struttura e del 

loro funzionamento è diventato di fondamentale importanza anche in ambio medico.  

Lo scopo di questo libro è presentare attraverso una descrizione completa delle reti e delle sue componenti, il 

loro utilizzo nel campo della Diagnostica per Immagini. Ovviamente per poter descrivere ciò, sono stati 

considerati tutti gli aspetti legati alle immagini analogiche e digitali, compreso la loro gestione. In particolare 

in merito alla condivisione tramite rete delle immagini digitali si sono affrontate problematiche legate alla 

loro compressione, codifica e ricostruzione, attraverso la descrizione dei più noti algoritmi in questo settore. 

Infine vengono descritti tutti quei problemi legati alla sicurezza informatica, come le password di 

autenticazione, la firma digitale, il virus informatico e le sue classificazioni. Concludendo vengono descritti 

anche gli aspetti legali, legati alla archiviazione digitale descrivendo gli standard di sicurezza dall’ITSEC ai 

Common Criteria.    

Il testo è stato principalmente sviluppato per gli studenti Facoltà di Medicina e Chirurgia ed in particolare per 

gli specializzandi in radiologia e per gli studenti del corso di laurea in Tecniche Radiologiche per Immagini e 

Radioterapia, per i quali sono state descritte le applicazioni delle reti nel campo dell’imaging diagnostico. 

Questo testo potrebbe essere adottato anche per studenti di ingegneria biomedica, vista l’ampia e profonda 

descrizione nell’analisi dei sistemi per l’elaborazione delle informazioni. 

Gli Autori 

Roberto Grassi 

Giovanni Pinto 

Nicola Serra 





Autori 
Roberto Grassi 

professore di ruolo di 1° fascia ordinario in Radiologia, presso la Facoltà di Medicina e Chirurgia, Seconda 

Università degli Studi di Napoli, Dipartimento Medico - Chirurgico di Internistica Clinica e Sperimentale “F. 

Magrassi e A. Lanzara”, direttore della scuola di specializzazione in Radioterapia e presidente del corso di 

laurea triennale in Tecnico Sanitario di Radiologia presso la SUN. E’ Autore/coautore di 46 libri e di 292 

pubblicazioni sia su riviste nazionali che internazionali, con 2847 citazioni e un impact points pari a 428.54. 

Responsabile di 18 progetti di ricerca per il MIUR, il CNR, il II Ateneo di Napoli e la Regione Campania. Ha 

svolto attività di insegnamento presso l’Università dal 1994 ad oggi, sia in Italia che all’estero nell’ambito 

della diagnostica per immagini e radioterapia. 

Ha prestato servizio: dal 1980 al 1992 presso il II Servizio di Radiologia della Facoltà di Medicina e Chirurgia 

dell’Università Federico II di Napoli. dal 1993 al 1998 presso il II Servizio di Radiologia dell’Azienda 

Ospedaliera di Rilievo Nazionale A. Cardarelli di Napoli. dal 1998 ad oggi presso l’Azienda Universitaria della 

Facoltà di Medicina e Chirurgia della Seconda Università di Napoli, ricoprendo l’incarico di responsabile 

U.O.S. di TC e RM.  

Ha svolto soggiorni di approfondimento in USA, in Giappone e Germania. L’attività scientifica e di ricerca è 

rivolta principalmente alle patologie addominali, le applicazioni digitali, le problematiche gestionali e le 

patologie d’urgenza e recentemente per studi longitudinali su piccoli animali investigati con apparecchi ad 

alta risoluzione. 

Giovanni Pinto 

Funzionario Programmatore Esperto - Centro Elaborazione Dati - dell’Azienda Ospedaliera “San Giuseppe 

Moscati”- Avellino. Conoscenze acquisite nel campo della programmazione e gestione dei siti Internet in 

linguaggio HTML ed in particolare Referente e Responsabile del sito Internet dell’Azienda Ospedaliera S. G. 

Moscati. Organizzatore e relatore dei Progetti Formativi Aziendali ECM per tutto il personale Sanitario ed 

Amministrativo sull’uso pratico nell’utilizzo del computer e delle procedure informatiche utilizzate 

nell’Azienda: uso della Firma Digitale, uso della PEC, utilizzo dell’Intranet Ospedaliera. Nomina Responsabile 

Aziendale della Conservazione - progetto SURAFS. Ha partecipato a vari convegni come relatore ECM. 

Docente a contratto presso la Facoltà di Medicina e Chirurgia, Seconda Università degli Studi di Napoli, 

Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale “F. Magrassi e A. Lanzara” al Corso di 

Laurea in Tecniche Radiologiche per Immagini e Radioterapia. Dall’anno 2001/2002 a tutt’oggi ha ricevuto 

l'incarico di insegnamento al Corso di Laurea in Tecniche Radiologiche per Immagini e Radioterapia presso il 

polo didattico di Avellino dell’Azienda Ospedaliera S. G. Moscati - attivato presso la Seconda Università 

degli Studi di Napoli. E’ coautore di 1 libro con la casa Editrice Springer e di tre pubblicazioni. Ha conseguito 

presso l’Università degli Studi di Salerno la Laurea in “Scienze dell’Informazione” della Facoltà Scienze 

Matematiche, Fisiche e Naturali. (Equipollenza della Laurea in Scienze dell'Informazione alla Laurea in 

Informatica. (GU n.101 del 3.5.2000) e Laurea Triennale in Tecniche di Radiologia Medica, per Immagini e 

Radioterapia conseguito presso l’Università degli Studi di Napoli Federico II. Dal 1988 al 2001 ha prestato 

Servizio presso L'Azienda Ospedaliera San Giuseppe Moscati - Avellino - Dipartimento Diagnostica per 

Immagini con esperienza lavorativa su Tomografia Computerizzata e Risonanza Magnetica. Dal 2001 a 

tutt'oggi presta servizio con competenze acquisite nel trattamento delle informazioni e dei software presso 

il Centro Elaborazione Dati  dell’Azienda Ospedaliera S. G. Moscati - Avellino.  

Nicola Serra 

Ricercatore a contratto presso la Facoltà di Medicina e Chirurgia, Seconda Università degli Studi di Napoli, 

Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale “F. Magrassi e A. Lanzara”. Laureato 

in matematica e dottorato in Biologia Computazionale. E’ autore/coautore di 12 articoli sia su riviste 

nazionali che internazionali con 24 citazioni, un impact points pari a 13.21 e di 5 atti a convegno. Ha svolto 

per l’Università, per enti pubblici e privati, attività di ricerca e di didattica a partire dal 2001 ad oggi, in 

ambito Matematico, Statitico e Bioinformatico, in merito a problematiche riguardanti la Biomedicina, il 

Protein Folding, i Grandi Database, le Tecniche di Digitalizzazione e di Ricostruzione delle Immagini Digitali, 

le reti neurali, i data mining, la Teoria delle reti e dei sistemi. 



15 La compressione Lossless delle immagini   

 
 

 

  

 

15.1 Introduzione 

15.2 Proprietà dei codici  

15.3 Il codice di Huffmann 

15.4 Codifica Aritmetica e codifica RLE (Run Lenght Encoding) 

15.5 Codifica Differenziale 

 

 

 

 

 

 

   Indice dei contenuti 



    Sistemi per l’elaborazione dell’informazione - 187 

15.1 Introduzione 

Si verificano diversi casi in cui dall’informazione compressa, sia possibile ricostruire l’informazione 

originaria, senza che questa venga minimamente alterata, ossia il flusso di bit prima del processo di 

compressione deve risultare esattamente identico al flusso di bit dopo il processo di decompressione. Le 

tecniche di compressione, che operano in questo modo vengono pertanto chiamate reversibili (con 

riferimento al fatto che il processo di compressione è reversibile) o più comunemente lossless (senza 

perdita). Nel caso di compressione lossless quindi, l’unica possibilità di un’alterazione dei bit nel flusso di 

dati binario decompresso rispetto a quello originale, può essere attribuita al rumore introdotto nel canale di 

comunicazione, contemporaneamente ad una non efficace codifica di canale. La compressione lossless 

basata sulle tecniche di codifica entropy encoding, opera sopprimendo, per quanto possibile, le ridondanze 

presenti nei flusso di bit che costituiscono il messaggio sorgente. 

15.2 Proprietà dei codici 

Per codice a blocchi si intende un codice in cui i simboli che costituiscono il messaggio sono organizzati in 

blocchi di lunghezza prefissata. Nei codici a lunghezza variabile, la lunghezza di ogni simbolo non è fissata, 

ma può variare da simbolo a simbolo. Gli algoritmi di compressione basati sulla codifica entropy encoding, 

si basano su trasformazioni (attraverso una mappatura uno a uno) di codici a blocchi in codici a lunghezza 

variabile. La compressione si ottiene quindi, quando il messaggio codificato contiene meno bit del 

messaggio sorgente. Dalla decompressione del messaggio codificato è possibile ricostruire esattamente il 

messaggio sorgente. 

  Simboli del messaggio 

sorgente 

Simboli del messaggio 

codificato 

000 0 

010 10 

110 11 

Figura 15.1. Esempio di mappatura di un codice a blocchi in un codice a lunghezza variabile. Il numero di 

bit complessivo del codice a lunghezza variabile è minore rispetto a quello del codice a blocchi. 

Nei codici a blocchi risulta abbastanza agevole distinguere un simbolo rispetto al successivo, poiche nel 

flusso di dati ogni simbolo si ripresenta ad intervalli di lunghezza prefissata. Per i codici a lunghezza 

variabile, potrebbe invece risultare estremamente difficile, in termini di tempo di elaborazione o addirittura 

impossibile discernere un simbolo dal successivo. 

I codici detti univocamente decodificabili godono della proprietà secondo la quale, ad ogni possibile 

sequenza di simboli del messaggio sorgente, deve corrispondere un’unica e diversa sequenza di simboli nel 

messaggio codificato. Questa condizione (necessaria e sufficiente), non è però applicabile nella pratica. Ad 

esempio, il codice composto dai simboli: 

1 2 3 40,  01,  11 ed 00,S S S S  

non è univocamente decodificabile in quanto la sequenza 0011 può essere interpretata sia come successione 

dei simboli S4 ed S3, che come successione dei simboli S1, S2, S3. 

Una seconda fondamentale proprietà è la decodificabilità istantanea. Nei codici che soddisfano questa 

proprietà, dal flusso di dati si può sempre stabilire quando si è ricevuto completamente un simbolo, senza 

dover aspettare di riceverne altri. Condizione necessaria e sufficiente affinché un codice sia istantaneamente 

decodificabile è che nessun simbolo sia il prefisso di un altro simbolo. Il codice: 

1 2 3 4 50,  10,  110, 1110 ed 1111,S S S S S  



188 – La compressione Lossless delle immagini  

è un esempio di codice istantaneamente decodificabile. Se un codice è istantaneamente decodificabile, si 

può dimostrare che è anche univocamente decodificabile. 

 

15.3 Il codice di Huffmann 

Questo algoritmo non distruttivo, realizzato nel 1952 dal matematico David A. Huffman, permette di 

attribuire una parola di codice binario, ai diversi simboli da comprimere (pixel o caratteri ad esempio). La 

lunghezza di ogni parola del codice non è identica per tutti i simboli, infatti secondo l’algoritmo i simboli più 

frequenti sono codificati con delle piccole parole di codice, mentre i simboli più rari ricevono dei codici 

binari più lunghi. Si parla allora di codifica a lunghezza variabile prefissata, per identificare questo tipo di 

codifica, dato che nessun codice è il prefisso di un altro. Così, la serie finale di parole codificate a lunghezza 

variabile sarà in media più piccolo rispetto ad un codice di dimensione costante. La costruzione dell’albero 

(vedi Figura 15.3) delle associazioni avviene attraverso i seguenti cinque passi: 

1. Viene analizzato e conteggiato il numero di ricorrenze degli elementi di base del file da 

comprimere: i singoli caratteri in un file di testo, i pixel in un file grafico; 

2. I due elementi meno frequenti sono accomunati in una categoria che li rappresenta entrambi. Così ad 

esempio se X ricorre 8 volte e Y 7 volte, viene creata la categoria XY, dotata di 15 ricorrenze. 

Intanto i componenti X e Y ricevono ciascuno un differente marcatore che li identifica come 

elementi entrati in un'associazione; 

3. Vengono identificati i due successivi elementi meno frequenti nel file e li si riunisce in una nuova 

categoria, usando lo stesso procedimento descritto al punto 2. Il gruppo XY può a sua volta entrare 

in nuove associazioni e costituire, ad esempio, la categoria XYZ. Quando ciò accade, la X e la Y 

ricevono un nuovo identificatore di associazione, che finisce con l’allungare il codice ed 

identificherà univocamente ciascuna delle due lettere nel file compresso che verrà generato; 

4. Viene creato quindi, per passaggi successivi, un albero costituito da una serie di ramificazioni 

binarie, all'interno del quale appaiono con maggiore frequenza ed in combinazioni successive gli 

elementi più rari all'interno del file, mentre appaiono più raramente gli elementi più frequenti. In 

base al meccanismo descritto, ciò fa sì che gli elementi rari all’interno del file non compresso, siano 

associati ad un codice identificativo lungo, che si accresce di un elemento ad ogni nuova 

associazione. Gli elementi invece che si ripetono più spesso nel file originale, sono anche i meno 

presenti nell’albero delle associazioni, sicché il loro codice identificativo sarà il più breve 

possibile; 

5. Viene generato il file compresso, sostituendo a ciascun elemento del file originale il relativo codice 

prodotto al termine della catena di associazioni, basata sulla frequenza di quell’elemento nel 

documento di partenza. 

Il guadagno di spazio al termine della compressione è dovuto al fatto che gli elementi che si ripetono 

frequentemente sono identificati da un codice breve, che occupa meno spazio di quanto ne occuperebbe la 

loro codifica normale. Viceversa gli elementi rari nel file originale ricevono nel file compresso una codifica 

lunga, che può richiedere, per ciascuno di essi, uno spazio anche notevolmente maggiore di quello occupato 

nel file non compresso. 

Dalla somma algebrica dello spazio guadagnato con la codifica breve degli elementi più frequenti e dello 

spazio perduto con la codifica lunga degli elementi più rari, si ottiene il coefficiente di compressione 

prodotto dall'algoritmo di Huffman. Da quanto detto si deduce che questo tipo di compressione è tanto più 

efficace quanto più ampie sono le differenze di frequenza degli elementi che costituiscono il file originale, 

mentre scarsi sono i risultati che si ottengono quando la distribuzione degli elementi è uniforme. 

Un’esempio dimostrativo del funzionamento di questo algoritmo è visionabile su Internet all’indirizzo 

http://www.cs.sfu.ca/CC/365/li/squeeze/Huffman.html. Qui si troverà un’applet java in grado di eseguire 

la generazione dell’albero delle associazioni, di produrre il codice compresso e di calcolare il coefficiente 

finale di compressione. 

Quindi è ragionevole aspettarsi che i simboli che costituiscono il messaggio sorgente non abbiano tutti la 

stessa frequenza, ma che alcuni simboli si presentino con una frequenza maggiore. I codici di Huffman 

http://www.cs.sfu.ca/CC/365/li/squeeze/Huffman.html


    Sistemi per l’elaborazione dell’informazione - 189 

traggono vantaggio dal fatto che i simboli del messaggio sorgente con frequenza maggiore, vengono 

codificati con simboli di lunghezza minore nel messaggio codificato, mantenendo la proprietà di 

decodificabilità istantanea. Per cui un messaggio costituito da n simboli si indica con 

numero di occorrenze del simbolo i-esimo
,           (1,..., )

numero totale di simboli
iP i n  

in cui Pi è la probabilità dell’i-esimo simbolo. Senza perdere di generalità, si può supporre che le probabilità 

di occorrenza dei simboli Pi siano ordinate in ordine decrescente: P1   P2   P3 n e definendo la 

lunghezza media del messaggio la quantità:          

1

n

av i i

i

L Pl  

in cui li indica la lunghezza del simbolo. In particolare diremo che un codice è efficiente se verificherà 

contemporaneamente le due disuguaglianze: 

1) P1   P2   P3 n  

2) l1 2 3 n 

In questo caso Lav assumerà il valore minimo. La costruzione di un codice di Huffman avviene attraverso i 

seguenti passi successivi: 

PRIMO PASSO 

Il messaggio sorgente deve essere letto una prima volta, in modo da determinare le probabilità associate ad 

ogni simbolo. Si prenda ad esempio un messaggio sorgente composto da una data successione di simboli di 3 

bit con le corrispondenti probabilità come indicato nella Figura 15.2 

 

Figura 15.2. Probabilità associate a ciascun simbolo 

SECONDO PASSO 

Successivamente si costruisce una tabella in cui nella prima colonna, i simboli del messaggio sorgente sono 

disposti in ordine decrescente di probabilità. Si raggruppano quindi i due simboli meno probabili sommando 

le loro probabilità e riportando il risultato in una nuova colonna, riordinando se necessario, in modo che le 

probabilità siano sempre in ordine decrescente. Il processo viene ripetuto fino a quando non restano 

solamente due valori di probabilità, come mostrato nella seguente Figura 15.3. Tale processo viene detto di 

processo di riduzione.  



190 – La compressione Lossless delle immagini  

 

Figura 15.3. Processo di riduzione nella costruzione di un codice di Huffman 

 

TERZO PASSO 

Il codice viene infine effettivamente generato nel processo detto di separazione. Nell’ultima colonna dalla 

tabella generata al punto precedente erano rimasti due soli valori, questi si possono codificare semplicemente 

attribuendogli i bit 0 e 1. Passando, alla colonna immediatamente a sinistra (ultima colonna), i valori di 

probabilità presenti sono nuovamente separati in due e la codifica avviene aggiungendo all’ultima il bit 0 al 

primo e il bit 1 al secondo, come indicato nella Figura 15.4. 

 

Figura. 15.4. Processo di separazione nella costruzione di un codice di Huffman

Al termine di questo processo, dal messaggio sorgente composto dai cinque simboli S1, …,S5 viene generato 

il codice composto dai cinque simboli S1, …,S5, codificati in codice binario con un minor numero di bit 

(Figura 15.4). Per cui avremo che: 

 

Figura 15.5 

                                                                       



    Sistemi per l’elaborazione dell’informazione - 191 

Codici di Huffmann adattivi

Il processo descritto sopra per la costruzione di un codice di Huffman, viene detto statico, in quanto richiede 

che un intero blocco di dati venga esaminato in modo da determinare le probabilità di ciascun simbolo, prima 

di poter procedere alla costruzione del codice vero e proprio. I codici di Huffman adattivi, pur continuando a 

basarsi sulla attribuzione di codici di lunghezza minore ai simboli che risultano avere una maggiore 

probabilità di occorrenza, vengono generati man mano che i simboli del messaggio sorgente vengono “letti” 

dal codificatore. Nei codici di Huffman adattivi infatti, le probabilità dei simboli non vengono calcolate 

esattamente, ma sono predette, ed eventualmente “adattate” contemporaneamente alla generazione del 

codice. Nella seguente Figura 15.6 è descritto il sistema che porta alla generazione di un codice di Huffman 

adattivo  

 

 

                                              Figura. 15.6. Generazione di un codice di Huffman adattivo 

Gli algoritmi utilizzati per la costruzione di un codice di Huffman adattivo comportano maggiori difficoltà 

rispetto a quelli statici. I codici di Huffman adattivi sono comunque importanti, in quanto, pur garantendo 

livelli di efficienza paragonabili a quelli dei codici di Huffman statici, presentano il vantaggio poter 

codificare un flusso continuo di informazioni digitali, quale ad esempio, quello prodotto dall’acquisizione e 

digitalizzazione dell’audio o del filmato video, quando sia necessaria la compressione in tempo reale come 

nel caso della lezione multimediale interattiva a distanza. 

Decodifica dei codici di Huffman 

La decodifica dei codici di Huffman può avvenire in due diversi modi: 

Il primo attraverso la decodifica detta bit-seriale, consente di realizzare un decodificatore con un tasso di 

lettura dei bit del messaggio codificato costante, ma con un tasso di uscita dei simboli decodificati 

variabile a seconda della lunghezza dei codici. 

Il secondo modo consiste nel generare una tabella di 2L righe, dove L è la lunghezza del codice più lungo del 

messaggio codificato. Il vantaggio di questo modo di procedere, consiste nel fatto che il decodificare ha 

un tasso costante di uscita dei simboli decodificati, ma non è però costante il tasso di lettura dei bit del 

messaggio codificato. 

 

15.4  Codifica Aritmetica e codifica RLE (Run Length Encoding) 

Oltre ai codici di Huffman, esistono svariate altre tecniche per comprimere in modo lossless l’informazione 

digitale. Tra queste, la codifica aritmetica e la codifica RLE (Run Length Encoding) sono frequentemente 

usate nella compressione dell’informazione multimediale. La codifica aritmetica trae vantaggio nel 

raggruppare e codificare con un singolo codice, un intero blocco di simboli dei dati da comprimere. La RLE 

è un processo di codifica nel quale vengono identificate nel flusso di dati da comprimere, sequenze di uno 

stesso simbolo, le quali vengono successivamente codificate con un unico codice che deve anche contenere 



192 – La compressione Lossless delle immagini  

ovviamente, il numero di volte che il simbolo si ripete. Proviamo ora a vedere come funziona un sistema di 

compressione non distruttivo RLE, acronimo di Run Lenght Encoding, che potrebbe essere tradotto in 

italiano con codifica della lunghezza di stringa. In questo tipo di compressione, ogni serie ripetuta di 

caratteri (o run, in inglese), viene codificata usando solo due byte: il primo è utilizzato come contatore e 

serve per memorizzare quanto è lunga la stringa, il secondo contiene invece l’elemento ripetitivo che 

costituisce la stringa. Si supponga  di voler comprimere in questo formato un file grafico contenente un 

grande sfondo di un solo colore uniforme. Tutte le volte che l’analisi sequenziale del file s’imbatterà in 

stringhe di caratteri uguali e ciò accadrà spesso nella scansione dello sfondo omogeneo, le serie ripetitive 

potranno essere ridotte a due caratteri soltanto: uno che esprime il numero delle ripetizioni, il secondo il 

valore che si ripete. Il risparmio di spazio sarà direttamente proporzionale al livello di uniformità presente 

nell’immagine. Provate invece ad usare il sistema RLE su una foto piena di colori differenti e di transizioni 

sfumate, il risparmio di spazio sarà notevole, perché poche saranno le stringhe di ripetizioni che l’algoritmo 

riuscirà a trovare leggendo sequenzialmente il file. Pensate infine, al caso limite di un’immagine creata 

artificialmente, come quella riportato in Figura 15.7, contenente una serie di pixel tutti differenti l’uno 

dall’altro nei valori cromatici. In questo caso, l’uso della compressione RLE, si dimostra addirittura 

controproducente. 

 

Figura 15.7. Immagine ingrandita di un file di 16  16 pixel, costituito da 256 colori unici differenti 

Questo file, salvato in formato BMP non compresso, occupa 822 byte. Salvato invece sempre in formato 

BMP, ma utilizzando l’algoritmo RLE, occupa 1400 byte, cioè 1,7 volte la sua grandezza originale. 

15.5 Codifica Differenziale 

Un’altra tecnica molto usata nella compressione Lossless delle immagini è la codifica Differenziale. 

Sfruttando la forte correlazione tra i pixel adiacenti, soprattutto nelle zone con tonalità grossomodo 

uniforme, si può diminuire il valore dell’entropia del messaggio sorgente e quindi rendere la distribuzione 

statistica dei simboli, passibile di rapporti di compressione più elevati, se consideriamo come simboli da 

codificare, non il valore associato ad ogni pixel, ma la differenza tra il valore associato ad un pixel e il 

successivo. Se i valori dei pixel di un’immagine sono: x1, x2, x3, …, xn, i simboli da codificare diverranno: 

1 0   con   1,...,    ed    0.i i iy x x i n x  

e i nuovi simboli così ottenuti sono chiamati residui di predizione degli xi. Una tipica distribuzione dei 

simboli xi e dei corrispondenti residui di predizione yi è mostrata in Figura 15.8. 

 



    Sistemi per l’elaborazione dell’informazione - 193 

Figura 15.8. Rappresentazione tipica di una distribuzione di probabilità dei valori dei pixel di un immagine xi 

presi in sequenza e dei corrispondenti residui di predizione yi.             

Si può osservare dalla Figura 15.8 che l’entropia dei residui di predizione è minore rispetto a quella del 

valore dei pixel. In particolare gli intervalli di xi ed yi sono rispettivamente [0,255] e [-255, 255].  

La codifica differenziale in se stessa non comporta una compressione dell’informazione, ma rende solo più 

efficace la codifica successiva. La codifica differenziale è quindi un esempio di source encoding nel quale 

viene ridotta l’entropia del messaggio sorgente e al quale segue sempre un processo di entropy encoding. 

Infine un’altro algoritmo non distruttivo, che va sotto il nome di LZW, è il risultato delle modifiche apportate 

nel 1984 da Terry Welch ai due algoritmi sviluppati nel 1977 e nel 1978 da Jacob Ziv e Abraham Lempel, 

e chiamati rispettivamente LZ77 e LZ78. 

Nota. Definizione di entropia della sorgente. 
Si definisce entropia di una sorgente i cui simboli sono  Si con  i = 1, …, n,  la quantità: 

2

1

1
log

n

i

i i

H S P
P

 

dove Pi denota la probabilità di occorrenza del simbolo i-esimo. L’entropia fornisce una misura della quantità di 

informazione contenuta nel flusso di bit, che deve essere sottoposto a compressione. 

  

 

 

 



16   La compressione Lossy delle immagini      

  

 

16.1 Introduzione 

16.2 Tecniche di compressione a campioni e codifica DPCM (Modulazione Codificata di Impulsi) 

16.3 Drastiche riduzioni di peso con lo standard JPEG 

16.4 JPEG 2000 l’evoluzione della specie 

   Indice dei contenuti 



    Sistemi per l’elaborazione dell’informazione - 195 

16.1 Introduzione 

Nella compressione Lossy, l’informazione digitale viene codificata in modo irreversibile, vale a dire che 

dopo la compressione non è più possibile ricostruire esattamente la stessa informazione iniziale, che era 

contenuta nel flusso di dati binario. La compressione Lossy rientra nella categoria denominata source 

encoding in quanto gli algoritmi adottati traggono tutti vantaggio dalle correlazioni che, a seconda del tipo di 

informazione da comprimere (immagini, filmati, ecc.), sono presenti all’interno del flusso di dati binario. In 

questo paragrafo verranno prese in esame alcune tecniche di compressione lossy per le immagini fisse 

utilizzate nello standard di compressione ISO JPEG (Joint Photographic Experts Group). Nelle immagini 

fisse si ha una correlazione di tipo spaziale tra i punti (pixel) adiacenti che la definiscono. Molte immagini 

infatti, presentano delle zone più o meno vaste, con una tonalità uniforme. Se in queste zone il valore del 

pixel varia di poco, accade che le corrispondenti differenze nell’immagine visualizzata sullo schermo, siano 

praticamente impercettibili. D’altra parte, uniformando il valore dei pixel di queste zone dell’immagine al 

loro valore medio, diventa possibile codificare un’intera zona dell’immagine con un unico valore. La tecnica 

utilizzata nello standard JPEG si basa sulla trasformata DCT (Discrete Cosine Transform), che verrà 

discussa in questa sezione. 

 

16.2 Tecniche  di  compressione  a  campioni e codifica  DPCM  (Modulazione Codificata di 

Impulsi) 

Prima di passare alla descrizione delle tecniche basate sulla trasformata DCT, che rientrano nella categoria 

della codifica a blocchi, in quanto l’immagine viene codificata analizzando un intero blocco di dimensioni 

generalmente pari 8  8 pixel, verrà accennata la codifica DPCM  (Differenzial Pulse Code Modulation), che 

rappresenta un esempio di codifica a campioni.  

Nelle tecniche di codifica a campioni l’immagine viene compressa codificando un pixel alla volta. La 

codifica a campioni ha quindi il vantaggio di essere concettualmente più semplice rispetto alla codifica a 

blocchi e di conseguenza consente un’implementazione meno complessa, con l’ulteriore vantaggio di una 

maggiore velocità di elaborazione, che viene generalmente espressa come numero di campioni codificati (e 

decodificati) per unità di tempo. Lo svantaggio invece, consiste nel fatto che il rapporto di compressione 

della codifica a campioni è minore di quello raggiungibile con la codifica a blocchi. 

Nella tecnica di compressione DCPM, (DIFFERENTIAL PULSE CODE MODULATION) dal flusso di dati 

binario che contiene i campioni dell’immagine, viene letto un campione alla volta. Per ciascun campione Xi,j, 

dove i e j sono le coordinate del campione, è generato un segnale residuo, denotato con ei,j ottenuto 

sottraendo a Xi,j il valore di predizione Pi,j. Nella seguente Figura 16.1, è rappresentato uno schema a blocchi 

della tecnica di compressione DCPM. 

 

Figura 16.1. Schema a blocchi della tecnica di compressione DPCM 



196 – La compressione Lossy delle immagini  

Il valore di predizione Pi,j si può calcolare dal valore dei campioni che si trovano nelle immediate vicinanze 

di Xi,j, utilizzando ad esempio una formula del tipo: 

                                  ,  1 , -1 2 -1, -1 3 -1,   i j i j i j i jP w X w X w X  

Dove w1, w2, w3, sono delle costanti. Il processo finora descritto è molto simile alla codifica differenziale, 

utilizzata per la compressione Lossless delle immagini. 

L’irreversibilità viene introdotta dal processo di quantizzazione. I residui ei,j, per quelle parti dell’immagine 

con tonalità pressoché costante, hanno un valore prossimo allo zero. Il processo di quantizzazione riduce 

questo valore esattamente a zero. In definitiva, nelle zone dell’immagine caratterizzate da una forte 

correlazione spaziale, i valori in uscita dal codificatore DPCM saranno quasi tutti zero e quindi passibili di 

elevati rapporti di compressione a causa del ridotto valore di entropia, se si sottoponesse il flusso di dati così 

ottenuto, ad una successiva compressione Lossless. Nella decodifica il flusso di dati compresso viene 

sottoposto al processo di quantizzazione inversa. In questo processo i valori che erano stati portati a zero dal 

quantizzatore, continuano ovviamente a rimanere zero ed è questa la principale causa di irreversibilità della 

compressione DPCM. 

 

16.3 Drastiche riduzioni di peso con lo standard JPEG 

La sigla JPEG identifica una commissione di esperti denominata Joint Photographic Expert Group, 

formata nel 1986 con lo scopo di stabilire uno standard di compressione per le immagini a tono continuo - 

cioè di tipo fotografico - sia a colori sia in bianco e nero. Il lavoro di questa commissione ha portato alla 

definizione di una complessa serie di algoritmi, approvata come standard ISO nell’agosto del 1990 e 

successivamente divenuta la raccomandazione T.81 (9/92) dell’ITU, International Telecommunication 

Union. Si può leggere la versione integrale in formato PDF dal sito del W3C. L’indirizzo è 

http://www.w3.org/Graphics/JPEG/itu-t81.pdf. Il documento è composto da 186 pagine fitte di definizioni, 

procedure, grafici, immagini esemplificative e formule matematiche.  

Il JPEG è dunque uno standard industriale e non va confuso con il formato di file JPG, che rappresenta di 

volta in volta, a seconda della software house che lo implementa, un sottoinsieme variabile e non sempre 

universalmente compatibile con lo standard di riferimento. 

Nota: In ogni caso Jpeg è il nome del formato e jpg l’estensione, per chiarire meglio questa sottile differenza basti 

pensare alla differenza fra “.html” e “.htm”. 

In pochi sanno ad esempio, che le specifiche JPEG descrivono anche un formato di compressione non 

distruttivo, basato su tecniche differenti da quelle che descriveremo di seguito, del quale si è ormai persa 

traccia. I meccanismi di compressione risultano  particolarmente adatti ad immagini contenenti un elevato 

numero di colori (immagini True Color), a gradazioni di grigio e per la memorizzazione di immagini 

fotografiche o di disegni molto sfumati. Negli altri casi, come cartoons, forniscono risultati generalmente 

peggiori di altri formati, sia in termini di qualità sia di dimensione dei file.  

L’algoritmo JPEG ottiene una buona compressione sfruttando le limitazioni conosciute dell’occhio umano. 

Infatti è stato progettato in modo che i pixel eliminati siano quelli meno percettibili, ad esempio se si trovano 

due pixel con minima variazione di luminosità vengono conservati, ma se si trovano due pixel con minima 

variazione di colore se ne conserverà uno solo.  

Tuttavia JPEG non usa un metodo fisso di compressione. E' possibile scegliere il grado di compressione che 

si desidera applicare a un’immagine, determinando in questo modo anche la qualità dell’immagine. Più si 

comprime un’immagine, più se ne riduce la qualità. JPEG può raggiungere rapporti di compressione molto 

alti, riducendo le dimensioni delle immagini di circa un centinaio di volte rispetto a quelle originali. Questo è 

http://www.w3.org/Graphics/JPEG/itu-t81.pdf





