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[ PREFAZIONE ALLA PRECEDENTE EDIZIONE ] 

A cinque anni dall’uscita della prima edizione proponiamo oggi questa nuova versione, 
arricchita in alcune parti. L’impianto teorico è rimasto essenzialmente lo stesso ma i cap. 8 e 
13 sono stati ampliati e rimaneggiati in maniera sostanziale.

La differenza più vistosa rispetto alla prima edizione è l’aggiunta di vari paragrafi 
spiccatamente metodologici, nei quali si descrivono le tecniche di biologia molecolare di più 
larga applicazione.  Abbiamo infatti pensato che sarebbe stato importante, a completamento di 
una trattazione teorica il più possibile esaustiva, affrontare anche alcuni aspetti più vicini alla 
pratica di laboratorio, creando un testo che potesse essere usato in uno spettro più ampio di 
insegnamenti. I paragrafi metodologici sono stati contrassegnati dal simbolo  che troverete 
sia nell’indice che in corrispondenza dei paragrafi.

La copertina di questa edizione ci mostra le interazioni molecolari che si instaurano tra 
la endonucleasi di origine batterica Cas9, l’RNA guida e il DNA bersaglio, così come avviene 
nel processo di editing genomico denominato CRISPR/Cas9. Proprio per questi studi, nel 
2020, il Premio Nobel per la Chimica è andato alla francese Emmanuelle Charpentier ed alla 
statunitense Jennifer A. Doudna, le prime due donne a condividere un Premio Nobel in campo 
scientifico. 

Cogliamo qui l’occasione per ringraziare l’Editore e lo staff tecnico che ha curato questa 
nuova edizione. Il loro apporto è stato, anche questa volta, decisivo per la buona riuscita di 
questo libro. 

Gli Autori

[ PREFAZIONE ALLA SECONDA EDIZIONE ]
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[ PREFAZIONE ALLA PRIMA EDIZIONE ] 

Natura valde simplex est et sibi consona. 
La natura è estremamente semplice ed è in armonia con sé stessa. 

Noi che ci accostiamo allo studio della Biologia molecolare possiamo considerare questo pen-
siero di Isaac Newton una sorta di passepartout, da portare sempre con noi. Ci serve per non 
scoraggiarci di fronte alla complessità cui ci troviamo di fronte. Voi studenti, ma anche noi che 
cerchiamo di aiutarvi nel vostro lavoro, dobbiamo sempre tenere nella mente che, per fare una 
delle cose più complicate al mondo, la natura sceglie sempre la strada più facile. Lo aveva ben 
capito un altro gigante del pensiero dell’uomo: Charles Darwin. Visto che tutte le forme di vita 
che ci circondano sono il frutto di una spietata selezione, durante la quale molte strade sono 
tentate, ciò che prevale, e quindi sopravvive, è ciò che trova la strada più conveniente per rag-
giungere l’obiettivo che si prefigge. Inoltre la strada più conveniente è sempre quella relativa-
mente più semplice.

La complessità con cui dobbiamo confrontarci nello studio delle basi molecolari della vita è 
molto aumentata negli ultimi anni. Abbiamo capito moltissime cose che fino a non molti anni fa 
erano del tutto oscure e, come sempre succede quando si esplora il non conosciuto, abbiamo 
scoperto anche cose che nessuno aveva nemmeno immaginato che esistessero. Un grande aiuto 
in questo lavoro di esplorazione è dovuto allo sviluppo di nuova tecnologia e, in particolare, a 
uno specifico tipo basato sulla natura stessa. Infatti, a differenza di altri campi di esplorazione 
della natura, come ad esempio la fisica, in cui è stata necessario inventare tecnologie, nel campo 
della biologia, abbiamo inventato ben poco. Non abbiamo fatto altro che usare ciò che già aveva 
costruito la natura. Stiamo ovviamente parlando degli strumenti biotecnologici che nel corso 
degli ultimi cinquant’anni hanno permeato tutta la ricerca in campo biologico. L’obiettivo, con-
siderata la premessa che abbiamo fatto, è quello di semplificare, creare cioè modelli semplici in 
cui siano note le variabili che introduciamo. A queste biotecnologie si sono aggiunte e, spesso, 
con esse si sono integrate anche strumentazioni molto sofisticate che oggi permettono la rac-
colta di enormi quantità di dati. Non vi sorprendete: con questi strumenti, e con un enorme 
contributo dato dalla bioinformatica, si sono raccolti talmente tanti dati, che facciamo fatica a 
gestirli. Consideriamo ad esempio il genoma umano (e quello di molti altri viventi). Lo abbiamo 
conquistato tutto, ma tra averlo scritto in un file di un computer e comprenderne il significato 
in ogni suo punto la strada sarà ancora lunga.

Perché tanta fatica? La prima molla è ovviamente la curiosità, che è una caratteristica della 
nostra specie, ma ci sono anche altri motivi altrettanto importanti. Il primo è che la conoscenza 
delle molecole della vita, del loro funzionamento e delle loro interazioni è cruciale per poter 
curare le malattie: per diagnosticarle in tempo, quando ancora sono curabili con gli strumenti 
che abbiamo a disposizione; per trovare nuove cure, che siano frutto non del caso ma della det-
tagliata conoscenza dei bersagli molecolari da colpire e, grande ambizione della medicina di 
ogni tempo, per prevenire la comparsa di malattie. Studiando la Biologia molecolare e leggendo 
questo libro, scoprirete che nel corso degli ultimi anni si è dovuto dare un nome a tante nuove 
molecole e che molti di questi nomi sono derivati dalla malattia in cui queste molecole sono 
coinvolte o di cui in qualche modo sono responsabili. Ancora una volta, non vi sorprendete. La 
necessità di capire le malattie per provare a combatterle si è da tempo affiancata alla curiosità, 
che aveva per secoli guidato lo studio della biologia e, in molti casi, la necessità sta prevalendo 
sulla curiosità. Molti sono convinti che questo non sia un bene. La medicina cerca scorciatoie, 
per risolvere nel più breve tempo possibile il problema che si pone. Ma le scorciatoie, nella stra-
da della conoscenza, a volte fanno perdere più tempo.

Intanto, noi che stiamo per cominciare lo studio della Biologia molecolare non abbiamo fret-
ta e non cercheremo scorciatoie. Questo libro, che vi aiuterà a scoprire le meraviglie che abbia-
mo dentro di noi e nei viventi che ci circondano, segue un filo logico ben preciso. In primo luogo, 
studieremo come sono fatte le molecole che governano il funzionamento delle cellule. Scoprire-
mo che la forma è sostanza, nel senso che è nella forma stessa che va cercata la funzione. Come 
per molti degli oggetti che abbiamo intorno a noi: una porta fa la porta perché ha quella forma. 
Se invece di essere rettangolare fosse tonda, non sarebbe una porta. Inoltre non basta essere 
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rettangolare per fare la porta. Deve essere un rettangolo che si adatta perfettamente agli stipi-
ti, altrimenti non può funzionare. Piccole differenze nella forma di una biomolecola le fanno 
perdere la funzione o, a volte, gliene fanno acquisire una nuova. Scopriremo poi che il cambia-
mento di forma è spesso cruciale per la funzione: se la porta non ruotasse sui suoi cardini non 
sarebbe una porta, ma una parte del muro fatta chi sa perché di legno invece che di mattoni. 
Infine, affronteremo il problema dell’interazione tra grandi molecole, per esempio tra DNA e 
proteine, che ci permetterà di farci un’idea generale dei principi che governano l’affollato am-
biente intracellulare.

Una volta appresi i principi generali ci addentreremo nel coinvolgimento di specifiche mo-
lecole nelle funzioni delle cellule. Cominciando dall’anatomia dei genomi, via via esploreremo 
i meccanismi molecolari della trascrizione, della sua regolazione, della maturazione dei tra-
scritti, e della loro traduzione e poi i meccanismi della replicazione e manutenzione dell’infor-
mazione genetica e della loro regolazione. Il viaggio attraverso le molecole della vita si conclu-
derà con alcuni esempi di differenziamento, di utilizzo specifico e finemente regolato di parti 
cruciali dell’informazione genetica.

Questa prima edizione è tutta scritta da docenti di Biologia molecolare, con il cruciale con-
tributo dello staff dell’Editore, cui va il nostro ringraziamento. La prossima sarà certamente 
migliore, perché arricchita dagli stimoli e dai suggerimenti che verranno dai voi lettori, cui 
questo lavoro è dedicato. 

Gli Autori

ICONOGRAFIA

Numerose figure di questo testo, contenenti strutture, sono state elaborate e rappresentate 
mediante l’applicazione Chimera (http://www.cgl.ucsf.edu/chimera) o Cn3D (http://www.
ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml).
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[ 64 ] Capitolo 3 INTERAZIONI TRA MACROMOLECOLE E STRUTTURA DELLA CROMATINA

[ 3.1 ] INTERAZIONI SPECIFICHE DNA-PROTEINE E RNA-PROTEINE
L’esistenza di interazioni tra DNA e proteine è nota dalla fine del XIX secolo, anche se le eviden-
ze sperimentali derivavano esclusivamente da indagini di microscopia ottica. Da allora, sono 
stati messi a punto numerosi metodi per lo studio del legame del DNA e dell’RNA con le protei-
ne, grazie ai quali è stato chiarito senza ombra di dubbio il ruolo che l’associazione tra polipep-
tidi e acidi nucleici ha in tutti i processi cellulari, dalla duplicazione del DNA alla sua trascri-
zione, ricombinazione e riparazione, fino alla traduzione, e più in generale nel controllo 
dell’espressione genica (Figura 3.1).

La regolazione dell’espressione genica, come vedremo più avanti nel testo, si fonda prima-
riamente sulla capacità di proteine specifiche di attaccarsi alla doppia elica del DNA (e al sin-
golo o, più raramente, al doppio filamento dell’RNA), modulandone l’utilizzo in base alle neces-
sità metaboliche della cellula e/o dell’intero organismo. Possiamo senza dubbio affermare che 
lo studio dei fenomeni associati a interazioni DNA/RNA-proteine costituisce il corpo principa-
le della ricerca biomolecolare, in rapidissima espansione soprattutto nella prospettiva della 
comprensione delle basi molecolari delle malattie.
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FIGURA 3.1  Le interazioni tra proteine e acidi nucleici sono alla base di tutti i processi cellulari e, in 
generale, del controllo dell’espressione genica. Lo schema riporta in modo semplificato i principali sistemi 
proteici coinvolti nei diversi processi.
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[ 3.1.1 ] Importanza dei legami deboli nelle interazioni tra macromolecole

Abbiamo visto finora come i legami deboli tengano insieme la struttura del DNA, dell’RNA e 
delle proteine. Non sorprende, pertanto, il fatto che le interazioni deboli siano anche respon-
sabili delle interazioni che si stabiliscono tra DNA e proteine e tra RNA e proteine (nonché tra 
proteine e proteine).

La principale interazione che si stabilisce tra proteine e DNA/RNA è di carattere ionico. Le 
proprietà polianioniche degli acidi nucleici, infatti, favoriscono il legame con proteine con ca-
rica positiva. L’esempio più importante è certamente quello degli istoni, piccole proteine ric-
che di lisina e arginina, e quindi con carica netta positiva a pH fisiologico, che costituiscono il 
nucleosoma. Ne parleremo in dettaglio più avanti nel capitolo; tuttavia, è opportuno fin da ora 
notare che il legame degli istoni al DNA rientra nella categoria delle interazioni in gran parte 
indipendenti dalla sequenza del DNA. Più spesso, le proteine utilizzano tutta la gamma dispo-
nibile dei legami deboli (legami dipolari come il legame idrogeno, interazioni elettrostatiche 
come i ponti salini, effetti entropici quali le interazioni idrofobiche, forze di dispersione come 
lo stacking) per “leggere” la sequenza del DNA o dell’RNA e selezionare quella propria per il 
legame.

Le associazioni fisiche tra macromolecole diverse possono essere complesse e possono se-
guire una vera e propria gerarchia delle interazioni. Le proteine, infatti, possono legarsi a un 
acido nucleico sia direttamente sia in modo mediato da altre proteine. In altri termini, spesso 
le proteine interagiscono con il DNA sotto forma di multimeri proteici, formati da entità pro-
teiche separate tra loro e assemblate per lo specifico bisogno. Un caso particolare, molto co-
mune, è rappresentato dalla dimerizzazione o dall’oligomerizzazione di un’unica proteina. La 
dimerizzazione costituisce una strategia fenomenale che le proteine adottano per poter rico-
noscere in modo specifico il DNA. In genere, infatti, le proteine che si legano al DNA lo fanno in 
due passaggi: un primo riconoscimento aspecifico, fondato essenzialmente su interazioni elet-
trostatiche, con affinità bassa (Kd dell’ordine di 1-2 mM), e un secondo riconoscimento, conse-
guente alla capacità della proteina di scorrere lungo il duplex, in cui la proteina interagisce con 
alta affinità (Kd dell’ordine di 1 pM) con una specifica sequenza di basi. Il problema è che, 
avendo a disposizione solo quattro tipi di nucleotidi, una sequenza che ricorra solo una o po-
che volte in un genoma deve essere lunga almeno 12-15 coppie di basi, cioè più di un giro di 
doppia elica (10 coppie di basi). Poiché il sito primario di riconoscimento è costituito dal solco 
maggiore, la soluzione topologicamente più semplice è che i due monomeri di un dimero pro-
teico riconoscano due solchi maggiori adiacenti. Nel Capitolo 6 descriveremo due esempi spe-
cifici di questo tipo di interazioni e scopriremo che questa modalità è sfruttata sia da proca-
rioti (si veda il Paragrafo 6.2.3) che da eucarioti (si veda il Paragrafo 6.4.3).

[ 3.1.2 ] Le proteine utilizzano specifici motivi strutturali per legarsi al DNA

Per riconoscere e interagire con specifiche sequenze del DNA, le proteine hanno sviluppato nel 
corso dell’evoluzione molti motivi (o domini strutturali) diversi. Come abbiamo mostrato 
nella Figura 2.15, ogni coppia di Watson-Crick, oltre ad avere legami idrogeno specifici tra le 
due basi, espone al solco maggiore e al solco minore bordi con profili chimici unici, costituiti 
da combinazioni diverse di donatori e accettori di legami idrogeno e di gruppi metilici. Di con-
seguenza, affinché una proteina possa riconoscere una sequenza di DNA, non è necessario che 
essa destabilizzi la doppia elica, potendo leggerne la sequenza dalla chimica dei bordi delle 
varie coppie di basi. La variabilità dei profili chimici è più alta nel solco maggiore che in quello 
minore, rendendo quest'ultimo meno utile. Tutti i motivi strutturali proteici che si legano al 
DNA agiscono secondo questa logica, utilizzando superfici chimicamente complementari a 
quelle di specifiche sequenze di DNA.

3.1.2.1 L’elica-giro-elica è stato il primo motivo strutturale scoperto

Il motivo elica-giro-elica (helix-turn-helix), come dice il nome, è costituito, nella sua forma più 
semplice, da due -eliche connesse da un breve tratto esteso, sufficientemente flessibile da 
permettere il ripiegamento di un’elica sull’altra (Figura 3.2a). Più precisamente, le due 

-eliche formano tra loro un angolo fisso, determinato da interazioni deboli tra i residui delle 
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eliche stesse. L’ -elica C-terminale è chiamata elica di riconoscimento, poiché costituisce la 
porzione del motivo strutturale che interagisce fisicamente con il DNA, a livello di un solco 
maggiore. La sua sequenza amminoacidica differisce da proteina a proteina e determina la 
specificità del riconoscimento. L’ -elica N-terminale ha invece un ruolo strutturale, permette 
cioè di posizionare l’ -elica di riconoscimento in modo corretto per l’interazione con il DNA.

Il motivo elica-giro-elica è stato inizialmente identificato in proteine batteriche coinvolte 
nella regolazione della trascrizione. Nel corso degli anni, sono state identificate molte variazio-
ni sul tema dell’elica-giro-elica, in proteine sia procariotiche che eucariotiche. A oggi, sono 
note centinaia di proteine diverse contenenti questo motivo. In particolare, sono state scoper-
te molte proteine in cui il motivo strutturale è costituito da tre eliche invece che due, con due 
eliche strutturali e una di riconoscimento (vi sono, peraltro, casi in cui è presente anche una 
quarta elica). L’esempio più importante di questa famiglia è costituito dall’omeodominio, mo-
tivo strutturale prettamente eucariotico, inizialmente identificato nei geni omeotici di Droso-
phila melanogaster (Figura 3.2b). A differenza del motivo elica-giro-elica dei procarioti, in cui 
la struttura della proteina contenente il motivo è molto variabile, tutti gli omeodomini sono 
circondati da strutture proteiche simili.

Alcuni motivi elica-giro-elica comprendono filamenti  che interrompono, precedono o se-
guono le eliche coinvolte nel legame al DNA. I filamenti  formano normalmente un foglietto  
antiparallelo, impacchettato addosso alle eliche del motivo. Questi domini misti -  costitui-
scono la variante “alata” (winged) del motivo elica-giro-elica (Figura 3.2c) e presentano una 
grande diversificazione topologica, in particolare riguardo alla conformazione della sequenza 
che costituisce il giro del motivo.

3.1.2.2 Lo zinc finger è un motivo strutturale prettamente eucariotico

Nel motivo strutturale a dito di zinco (zinc finger), un atomo di zinco fa da collante a strutture 
con forme e dimensioni diverse, ma con il tratto comune della formazione di una protuberanza 
(il dito) che interagisce in modo specifico con il DNA a livello di un solco maggiore della doppia 
elica. L’atomo di zinco è coordinato alla base del dito da quattro ligandi, che possono essere, in 
combinazione variabile, cisteine o istidine. Il classico zinc finger ha un atomo di zinco coordi-
nato da due cisteine e due istidine (tipo Cys2His2) e il dito, lungo una ventina di residui ammi-
noacidici, si struttura a formare un’ -elica da un lato e un foglietto  dall’altro (Figura 3.3). 
Tuttavia, come detto, le strutture degli zinc finger sono molto variabili, i ligandi possono essere 
tutte cisteine e ci sono casi in cui la protuberanza è quasi del tutto assente.

Le proteine che usano questo motivo strutturale contengono di norma più di uno zinc fin-
ger. Nell’esempio mostrato in Figura 3.3, che si riferisce al fattore trascrizionale murino 
Zfp57, ci sono due motivi adiacenti a dito di zinco che interagiscono con una sequenza con-

a) b) c)

FIGURA 3.2  Diverse strutture basate sul motivo elica-giro-elica. a) Il motivo di base elica-giro-elica, qui mostrato nel 
repressore Cro del fago  [codice PDB 5CRO]. b) Il motivo omeodominio della proteina Antennapedia di Drosophila mela-
nogaster complessato al DNA [codice PDB 9ANT]. c) Un esempio di variante “alata” del motivo elica-giro-elica. È mostrata 
la struttura del dominio N-terminale di BirA, il repressore dell’operone della biotina di Escherichia coli [codice PDB 1BIA]. Il 
dominio costituisce il motivo di riconoscimento del DNA, in cui due foglietti  antiparalleli (rossi) seguono il classico motivo 
elica-giro-elica. Le eliche di riconoscimento sono sempre colorate in verde, quelle di posizionamento in azzurro.
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senso all’interno di un unico solco maggiore del DNA. Nel fattore TFIIIA della rana Xenopus lae-
vis, la prima proteina in cui questo motivo strutturale è stato identificato, ben nove motivi a 
dito di zinco interagiscono sequenzialmente con solchi maggiori adiacenti, avvolgendo la pro-
teina in modo destrorso attorno alla doppia elica del DNA e stabilendo contatti multipli che 
rafforzano l’interazione macromolecolare.

Lo zinc finger è un motivo strutturale utilizzato dalle proteine anche per interagire con  
l’RNA, sebbene le modalità di riconoscimento dell’acido nucleico siano significativamente di-
verse da quelle con il DNA. In particolare, lo scheletro polinucleotidico dell’RNA gioca un ruolo 
importante, con i gruppi fosfato coinvolti nel legame; sono anche rilevanti le interazioni di 
stacking (impilamento) tra basi azotate e residui amminoacidici idrofobici.

Alcuni domini a dito di zinco sono utilizzati dalle proteine per interagire con altre proteine, 
piuttosto che con il DNA o con l’RNA. Queste interazioni sono state, ad esempio, dimostrate in 
sistemi proteici multimerici coinvolti nel rimodellamento della cromatina, nel funzionamento 
degli chaperoni, nell’organizzazione del citoscheletro, nello sviluppo degli epiteli e in molti al-
tri processi cellulari. È notevole il fatto che alcuni fattori trascrizionali che usano gli zinc finger 
per interagire con il DNA, sfruttino a volte questi domini anche per interagire tra loro, a ulte-
riore dimostrazione della grande versatilità strutturale e funzionale del motivo a dito di zinco.

3.1.2.3 Le cerniere di leucina agganciano come una forbice la doppia elica del DNA

La cerniera di leucine (leucine zipper) è un motivo strutturale che deriva dalla dimerizzazio-
ne in parallelo di lunghe -eliche avvolte una sull’altra. Le due -eliche sono anfipatiche, cioè 
hanno una faccia idrofobica e l’altra polare, e di norma derivano da monomeri distinti. Il nome 
del motivo strutturale deriva dal fatto che le -eliche contengono una leucina ogni 7 residui. 
Poiché l’ -elica ha un passo di 3,6 residui (si veda il Paragrafo 2.6.3.1), ogni due giri c'è una 
leucina, posizionata sempre sulla stessa faccia dell’elica. Il ruolo delle leucine è quello di per-
mettere l’interazione tra le due -eliche e il loro superavvolgimento attraverso la formazione 
di interazioni idrofobiche (Figura 3.4).

L’interazione mediata dalle leucine riguarda una parte delle eliche, quella definita dominio 
di dimerizzazione. Distalmente a esso, su ognuna delle due eliche vi è il dominio di legame 
al DNA, con proprietà basiche, costituito dalla porzione rimanente di -elica che va a posizio-
narsi all’interno del solco maggiore del DNA (Figura 3.4). Questo è il dominio specifico per 
una determinata sequenza di DNA. Poiché le cerniere di leucine agiscono in forma dimerica, è 
possibile la formazione non solo di omodimeri, in cui i domini di legame al DNA riconoscono la 
stessa sequenza nucleotidica su solchi maggiori adiacenti, ma anche di eterodimeri, che posso-
no riconoscere solchi adiacenti con sequenze diverse (Figura 3.5a). Considerando che sono 

FIGURA 3.3  Motivo zinc finger. Un atomo di zinco (in rosso) è 
coordinato da residui di cisteina e istidina a formare una struttura 
in grado di interagire, di norma, con il solco maggiore del DNA. 
Nella figura è rappresentata la struttura parziale del fattore tra-
scrizionale murino Zfp57 complessato al DNA [codice PDB 4GZN], 
in cui si notano due motivi classici a dito di zinco, con coordinazio-
ne Cys2His2, posti sequenzialmente a legare una corta sequenza 
consenso di 6 coppie di basi all’interno di un solco maggiore.
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state identificate finora un centinaio di proteine che utilizzano il motivo strutturale a cerniera 
di leucine, il numero di possibili combinazioni eterodimeriche è molto elevato.

La possibilità che nelle proteine due o più -eliche potessero avvolgersi tra loro, come i fili 
in una corda, era stata predetta da Crick già all’epoca della definizione della struttura del DNA. 
La prima prova cristallografica dell’esistenza del motivo a cerniera di leucine è invece relativa-
mente recente, ottenuta nel 1991 sul fattore trascrizionale di lievito omodimerico GCN4, e ha 
dimostrato come la struttura sia esattamente quella predetta da Crick. La prova dell’esistenza 
di eterodimeri è ancora più recente; uno degli esempi più importanti è quello del complesso 
Fos/Jun, i due componenti di AP-1, fattore trascrizionale coinvolto, tra l’altro, nella prolifera-
zione cellulare e nell’insorgenza del cancro. La risoluzione della struttura cristallografica del 
complesso ha mostrato come i due monomeri interagiscano con il DNA in modo leggermente 
diverso, con l’elica di Fos che si inserisce in modo diretto nel solco maggiore e l’elica di Jun che 
vi si ripiega intorno prima di legarsi al DNA (Figura 3.5b). In questo caso, l'asimmetria dell’e-
terodimero permette il legame di un’altra proteina legante il DNA, selettivamente su uno dei 
due lati del complesso Fos/Jun.

Dominio di
dimerizzazione

Dominio di
legame al DNA

FIGURA 3.4  Motivo leucine zipper. Due -eliche di due mono-
meri distinti formano un’elica superavvolta stabilizzata dalla pre-
senza di residui di leucina ripetuti ogni due giri di -elica. Il dimero 
di superelica stabilizza il dominio di legame al DNA, formato a sua 
volta dalle porzioni N-terminali delle -eliche, che interagisce a li-
vello del solco maggiore del DNA. I residui di leucina sono eviden-
ziati con la struttura a bastoncini.

a)

b)

Fos

Fattore trascrizionale
aggiuntivo

Jun

FIGURA 3.5  a) Le leucine zipper pos-
sono essere sia omodimeriche che etero-
dimeriche. Strutture omodimeriche ri-
co noscono sequenze palindromiche di 
DNA; strutture eterodimeriche possono 
formarsi combinando monomeri diversi 
e riconoscono sequenze non palindromi-
che. b) Nell’eterodimero Fos/Jun [codice 
PDB 1A02], la leucine zipper è significati-
vamente asimmetrica, con il monomero 
Jun che avvolge il monomero Fos prima 
di interagire con il DNA. L'asimmetria 
dell’eterodimero favorisce il posiziona-
mento, su un lato della sequenza rico-
nosciuta dalla leucine zipper, di un’altra 
proteina legante il DNA.
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3.1.2.4 Il motivo elica-ansa-elica sembra combinare le proprietà di altri domini strutturali

Come per le cerniere di leucine, le proteine che contengono il motivo elica-ansa-elica (helix-lo-
op-helix) agiscono sempre in forma dimerica, di norma come eterodimeri. Ogni monomero con-
tiene un motivo lungo circa 60 amminoacidi, formato da due -eliche connesse da un’ansa. Il 
posizionamento delle eliche è molto diverso da quello del motivo elica-giro-elica (Figura 3.6) e 
anche il ruolo delle due eliche è differente: l’ -elica H1, più lunga, posizionata all’estremità N-
terminale del dominio, contiene residui basici che favoriscono l’interazione con un tratto di 6 
nucleotidi del DNA chiamato E-box; quella più corta H2 al C-terminale serve per la dimerizza-
zione, in modo analogo a quanto abbiamo visto per le cerniere di leucine. In realtà, l'elica H2 può 
allungarsi a comprendere anche un motivo leucine zipper, come nell'esempio mostrato in figura. 
La variabilità delle sequenze nelle E-box, associata al potenziale combinatorio delle regioni di 
dimerizzazione, determina come i vari membri della famiglia controllino processi diversi tra 
loro, tra cui la determinazione del sesso e lo sviluppo del sistema nervoso e dei muscoli.

Tra le strutture cristallografiche risolte di proteine contenenti il motivo elica-ansa-elica, in 
Figura 3.6 è mostrata quella relativa all’eterodimero Max-Mad, un fattore di trascrizione coin-
volto nel controllo della proliferazione cellulare. È particolare la presenza su ogni monomero 
di una -elica di dimerizzazione costituita da due segmenti: l’elica canonica H2 e un’elica con-
tenente una cerniera di leucine. È un esempio lampante di come motivi strutturali diversi pos-
sano trovarsi a lavorare insieme nella stessa proteina.

FIGURA 3.6  Motivo elica-ansa-elica. Le proteine che sfruttano 
questo motivo agiscono sempre in forma dimerica. Il dimero può es-
sere stabilizzato dalla presenza di ulteriori tratti di -elica su ogni 
monomero, che insieme formano una leucine zipper, come nel caso 
del complesso Mad-Max qui mostrato [codice PDB 1NLW]. I residui di 
leucina sono evidenziati con la struttura a bastoncini.

[ 3.2 ] ASSEMBLAGGIO DEL DNA IN CROMOSOMI: STRUTTURA DELLA CROMATINA
Il genoma umano diploide contiene circa 6,4 miliardi di coppie di basi, distribuite in 46 cromo-
somi. Il cromosoma 1, il più grande, contiene circa 250 milioni di coppie di basi. Descrivendo la 
struttura del DNA-B, abbiamo visto come la distanza tra coppie di basi adiacenti sia di circa  
3,4 Å (1 Å = 10–8 cm). Se la struttura fosse rigidamente lineare, il cromosoma 1 si estenderebbe 
quindi per 8,5 cm e tutto il genoma messo in fila sarebbe lungo oltre 2 metri, valori evidente-
mente incompatibili con il diametro medio delle cellule, dell’ordine dei micron. Utilizzando lo 
stesso schema, potremmo calcolare che il DNA contenuto nei circa 50.000 miliardi di cellule del 
corpo umano coprirebbe una distanza pari a circa 600 volte quella che separa la Terra dal Sole. 
È importante, quindi, capire come il DNA venga confinato all’interno del nucleo della cellula.

Abbiamo già visto come il DNA possa assumere strutture più compatte di ordine superiore 
grazie al superavvolgimento. I procarioti utilizzano, infatti, la formazione di supereliche per 
impacchettare il DNA al proprio interno, anche con l’aiuto di piccole proteine architetturali in 
grado di piegare la doppia elica o di fare da ponte tra tratti distanti del duplex. Mentre, però, 
questo è sufficiente nel caso di genomi di grandezza dell’ordine di qualche milione di coppie di 
basi, negli eucarioti devono intervenire processi più complessi, in grado di ridurre di molti ordi-
ni di grandezza lo spazio occupato dal DNA. Il prodotto finale di questi processi di compatta-
mento è la cromatina, una struttura con livelli gerarchici di compattamento che costituisce il 
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substrato genomico fondamentale per tutti i processi vitali del DNA. La cromatina comprende 
masse all’incirca equivalenti di DNA e di proteine e presenta un compattamento dinamico, poi-
ché cambi di condensazione devono avvenire in modo rapido e al momento opportuno (ad 
esempio in specifiche fasi del ciclo cellulare). Cambiamenti nello stato di compattamento posso-
no altresì essere non solo globali all’interno di una cellula (ad esempio nella mitosi), ma anche 
localizzati, come nel caso della trascrizione di specifici geni. La necessità di cambiamenti dina-
mici dello stato di compattamento ha richiesto l’evoluzione di specifici sistemi enzimatici in 
grado di alterare in modo specifico lo stato del DNA. In definitiva, in ogni istante, il DNA si trova 
compattato in modo non omogeneo: i tratti molto compattati e meno accessibili vanno sotto il 
nome di eterocromatina, quelli più rilassati e accessibili si definiscono invece eucromatina. Il 
termine eucromatina (dal greco ey, bene) suggerisce in modo immediato che questa è la strut-
tura funzionalmente attiva, come vedremo nei capitoli successivi, in particolare quando parle-
remo della replicazione e della regolazione della trascrizione. Qui ci soffermeremo, invece, solo 
sugli aspetti strutturali, cioè sui meccanismi che portano la doppia elica a compattarsi.

[ 3.2.1 ] Il nucleosoma costituisce il primo livello nel compattamento del DNA

Il primo, fondamentale livello di compattamento del DNA eucariotico è costituito dal  
nucleosoma, struttura costituita da un ottamero proteico su cui si avvolge la doppia elica del 
DNA. Il nocciolo, o core, del nucleosoma è formato da otto molecole di istoni, piccole proteine 
basiche ricche di arginina e lisina, adatte a interagire per via elettrostatica con il DNA in modo 
sequenza-indipendente. Costituiscono il core ottamerico del nucleosoma gli istoni H2A, H2B, 
H3 e H4, ognuno presente in due copie. Un quinto tipo di istone, denominato H1, si lega al DNA 
linker, cioè al tratto di DNA posto tra due nucleosomi adiacenti, e ha il ruolo, come vedremo, di 
favorire l’ulteriore compattamento della cromatina.

In vitro, la rimozione dalla cromatina dell’istone H1 è molto più agevole di quella degli altri 
istoni, a dimostrazione della forza che tiene insieme l’ottamero istonico nel core. Quando l’isto-
ne H1 viene rimosso, la cromatina assume una particolare struttura, visibile al microscopio 
elettronico, denominata filo di perle (Figura 3.7a), nella quale a ogni perla corrisponde un 
nucleosoma e il DNA linker collega i nucleosomi tra loro. Poiché il diametro di un nucleosoma 
è di circa 11 nm, il filo di perle viene anche chiamato, per approssimazione, fibra da 10 nm. La 
quantità di DNA contenuta in ogni nucleosoma è stata determinata trattando la cromatina a 
filo di perle con una DNasi, cioè un enzima idrolitico che taglia il DNA. La DNasi micrococcica, 
o MNasi, ha la proprietà di tagliare il DNA interposto tra i nucleosomi, non protetto dal legame 
dell’ottamero istonico, con efficienza molto più alta rispetto al DNA avvolto intorno al core. Un 
trattamento blando della cromatina con MNasi permette di regolare la quantità di tagli effet-
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FIGURA 3.7  a) La struttura a filo di perle rivelata median-
te microscopia elettronica. Le strutture più dense (le “perle”) 
sono i nucleosomi. b) Profilo elettroforetico del DNA sotto-
posto a parziale digestione con DNasi. Il gel elettroforetico 
mostra bande corrispondenti a frammenti di DNA la cui lun-
ghezza è multipla di 200 coppie di basi.
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tuati tra un nucleosoma e l’altro. Se la reazione viene fermata in modo che sia avvenuto al 
massimo un taglio idrolitico tra un nucleosoma e il successivo, e la grandezza dei frammenti 
ottenuti viene determinata mediante analisi elettroforetica, si osservano bande molto nette, di 
grandezza pari a multipli di circa 200 coppie di basi, corrispondenti a nucleosomi, dinucleoso-
mi, trinucleosomi e così via (Figura 3.7b). La presenza di bande discrete è la dimostrazione 
della struttura ripetitiva della cromatina e indica che la grandezza dei nucleosomi è sostanzial-
mente indipendente dalla sequenza del DNA che vi si avvolge intorno.

3.2.1.1 Gli istoni costituiscono l’impalcaltura molecolare del nucleosoma

Nel processo di assemblaggio dell’ottamero istonico, si formano inizialmente eterodimeri 
H3-H4 e H2A-H2B. Negli eterodimeri, i due monomeri sono collegati in conformazione testa-
coda. Due dimeri H3-H4 tetramerizzano prima di interagire con due dimeri H2A-H2B per for-
mare il core nucleosomico completo (Figura 3.8a). La forma del core è quella di un disco sca-
nalato sul bordo, con un asse di simmetria diadico che lo attraversa longitudinalmente. In altri 
termini, la struttura macroscopica del core non cambia se esso viene fatto ruotare di 180° in-
torno all’asse di simmetria (Figura 3.8b). Questa proprietà è la conseguenza diretta del posi-
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N FIGURA 3.8  Assemblaggio del nucleosoma. a) Due monomeri di 
H3 e due di H4 tetramerizzano e stimolano l’avvolgimento del DNA.  
Due dimeri H2A-H2B vengono quindi incorporati a formare il nucleoso-
ma completo [codice PDB 1AOI]. b) Struttura del core istonico (si veda 
il testo).
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zionamento dei monomeri di ognuno dei quattro tipi di istone all’interno dell’ottamero. La 
struttura cristallografica del core del nucleosoma è stata risolta ad alta risoluzione dal gruppo 
di Timothy Richmond nel 2002 e ha svelato i dettagli dell’interazione tra DNA e ottamero isto-
nico: il DNA si avvolge intorno al core descrivendo quasi due giri completi, per la precisione 
1,67 giri, costituiti da 146 coppie di basi (Figura 3.9). Questo dato non è in contrasto con il 
risultato degli esperimenti di digestione nucleasica descritti sopra: l’unità di circa 200 coppie 
di basi, infatti, comprende sia la porzione di DNA avvolta intorno al core sia il tratto del DNA 
linker interposto tra nucleosomi adiacenti. Gli istoni interagiscono con il DNA a livello dei sol-
chi minori, attraverso la formazione di numerosi legami idrogeno tra i residui amminoacidici 
e gli atomi di ossigeno dei legami fosfodiesterici posti in prossimità dei solchi minori stessi. Ci 
sono, di conseguenza, 14 punti di contatto tra istoni e DNA nel core del nucleosoma. L’avvolgi-
mento del DNA intorno al core è sinistrorso (Figure 3.8 e 3.9). Come abbiamo visto nel Para-
grafo 2.4, la formazione di un solenoide sinistrorso equivale topologicamente a un superavvol-
gimento negativo. L’avvolgimento del DNA intorno all’ottamero istonico richiede, infatti, la ri-
mozione di circa un giro di elica. Poiché l’avvolgimento non implica la rottura del doppio fila-
mento del DNA, esso non fa variare il numero di legame (L) ed è quindi topologicamente 
invariante. Di conseguenza, il superavvolgimento negativo del DNA avvolto deve essere com-
pensato da un superavvolgimento positivo nelle regioni linker. Questo superavvolgimento po-
sitivo, però, viene rimosso da specifiche topoisomerasi, lasciando invariati i superavvolgimen-
ti negativi a livello del nucleosoma. La formazione del nucleosoma costituisce a tutti gli effetti 
il modo in cui gli eucarioti superavvolgono negativamente il proprio DNA. Infatti, a differenza 
dei procarioti, che usano a questo fine la girasi (si veda il Paragrafo 2.4.3), gli eucarioti non 
possiedono topoisomerasi in grado di introdurre attivamente superavvolgimenti negativi. La 
cosa è di fondamentale importanza, poiché implica che, quando un nucleosoma si disgrega, il 
duplex di DNA libero dal core può, grazie allo stato di superavvolgimento negativo, più facil-
mente separarsi nei due filamenti, un processo fondamentale sia nella replicazione che nella 
trascrizione del DNA.

Tutti gli istoni presentano un motivo strutturale peculiare, denominato histone fold, o ri-
piegamento istonico, costituito da tre corte -eliche connesse da brevi anse (Figura 3.10). I 
punti di contatto con il DNA sono principalmente (129 coppie di basi su 146) contenuti nell’hi-
stone fold di ogni istone, che interagisce, in particolare, con lo scheletro fosfodiesterico o con i 
solchi minori del duplex. È interessante notare come l’interazione istoni-DNA sia favorita 
dall'attrazione elettrostatica tra le cariche positive delle catene laterali degli istoni e quelle 
negative dei gruppi fosfato del DNA, ma stabilizzata in modo predominante da legami idrogeno 
che si formano tra il DNA e lo scheletro polipeptidico degli istoni. La struttura cristallografica 
ha mostrato, inoltre, che il core del nucleosoma è molto compatto, mentre le regioni N-termi-
nali degli istoni sono più disordinate e costituiscono delle vere e proprie protrusioni dal core 
(Figura 3.9). Queste code istoniche non contribuiscono in modo apprezzabile al legame con il 
DNA, mentre hanno un ruolo importante nello stabilire interazioni tra nucleosomi adiacenti, 
favorendo gli ulteriori processi di compattamento della cromatina. Per sporgere all’esterno del 

FIGURA 3.9  Struttura cristallografica del nucleosoma [codi-
ce PDB 1KX5]. 146 coppie di basi di DNA si avvolgono in modo 
sinistrorso, formando 1,67 giri intorno all’ottamero istonico. Il 
nucleosoma è mostrato di fronte, di lato e dall’alto. La struttura 
cristallografica è stata risolta su un nucleosoma artificiale as-
semblato utilizzando gli istoni della rana Xenopus laevis e una 
sequenza palindromica di DNA umano. Le frecce indicano punti 
in cui la doppia elica del DNA si ripiega bruscamente.
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core, le code devono attraversare la doppia elica del DNA avvolto intorno all’ottamero. Per fare 
ciò, esse si fanno letteralmente strada attraverso canali costituiti sul DNA dai solchi minori del-
le due eliche adiacenti allineati tra loro (Figura 3.9). Le code istoniche sono il bersaglio di 
modificazioni post-traduzionali importantissime per la regolazione dell’attività e della struttu-
ra degli istoni. Più avanti in questo capitolo affronteremo la questione del ruolo di queste modi-
ficazioni epigenetiche nella dinamica dei nucleosomi (si veda il Paragrafo 3.2.4), mentre delle 
modificazioni post-traduzionali delle proteine in generale parleremo nel Capitolo 9.

Gli istoni si sono evoluti precocemente nella storia degli eucarioti; essi si possono, infatti, 
ritrovare in organismi filogeneticamente molto distanti, come protozoi, funghi, piante e mam-
miferi. Proteine simili agli istoni si ritrovano anche negli Archaea e nei procarioti. I batteri, ad 
esempio, utilizzano le proteine HU per piegare il DNA e stabilizzare il superavvolgimento del 
cromosoma durante la replicazione e la trascrizione. Parimenti, nel batterio estremofilo Metha-
nothermus fervidus ci sono istoni archeali che, sotto forma di complessi tetramerici, si avvolgo-
no intorno alla doppia elica del DNA. Alcuni istoni archeali, come quelli del Methanopyrus 
kandleri, contengono addirittura un motivo istonico omologo all’histone fold eucariotico.

3.2.1.2 Il bending del DNA su specifiche sequenze favorisce la formazione del nucleosoma

Il ripiegamento (bending) del DNA intorno al core del nucleosoma non è omogeneo: il du-
plex si avvolge a scatti, con piegamenti acuti intervallati da brevi tratti quasi lineari (Figura 
3.9). Per fare ciò, il DNA deve adattarsi alla forma dell’ottamero. Poiché nella forma avvolta il 
DNA ha un passo inferiore a quello della forma canonica B (10,2 contro 10,5 coppie di basi per 
giro), con il conseguente restringimento del solco minore, i piegamenti acuti sono favoriti da 
sequenze di DNA che permettono il riarrangiamento di questo solco. Abbiamo già citato nel 
Paragrafo 2.2.6 l’effetto favorente di sequenze ripetute di coppie A-T sulla curvatura del DNA. 
Coerentemente con questo, si è osservato che, anche nei nucleosomi, sequenze ripetute A-T 
favoriscono il restringimento del solco minore e il conseguente piegamento della doppia elica, 
mentre sequenze ripetute G-C lo contrastano (Figura 3.11). L’inserzione di un residuo istoni-
co di arginina all’interno del solco minore è un altro determinante che favorisce il piegamento 
della doppia elica. Il concetto, dunque, della formazione dei nucleosomi del tutto indipendente 
dalla sequenza del DNA va riconsiderato: i nucleosomi possono formarsi grosso modo in qua-
lunque punto, tuttavia la struttura fine del ripiegamento del DNA attorno al core istonico è 
modulata dalla sequenza dello specifico tratto di DNA e determina, in ultima istanza, la proba-
bilità dell’assemblaggio del core e la forza della sua interazione con il DNA.

Attualmente, è possibile determinare con precisione la posizione dei nucleosomi lungo il 
DNA genomico. Ad esempio, il gruppo di Mavrich nel 2008 ha analizzato il posizionamento dei 
nucleosomi nel genoma del lievito, combinando elegantemente tecniche biochimiche classiche 
e moderni metodi biomolecolari (Figura 3.12). In particolare, gli istoni del core sono stati 
dapprima legati covalentemente tra loro mediante cross-link (una tecnica biochimica che per-
mette la formazione di legami crociati tra polipeptidi diversi), quindi il DNA genomico è stato 
digerito con nucleasi e i nucleosomi risultanti sono stati separati mediante cromatografia di 
affinità, sfruttando anticorpi specifici per gli istoni H3 e H4. Il DNA associato a ogni singolo 
nucleosoma è stato poi sequenziato. La ricerca di Mavrich ha messo in evidenza come alcune 
regioni del DNA genomico del lievito non siano propense a formare nucleosomi, probabilmen-
te perché devono mantenere in modo costante la possibilità di essere trascritte (o di legare 
fattori che regolano la trascrizione; si veda il Capitolo 5).
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FIGURA 3.10  Il dominio histone fold è contenuto in tutti gli istoni del core del nucleosoma. L’histone fold è 
costituito da tre porzioni ad -elica connesse da brevi anse.




