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Prefazione

Queste note sono state redatte a cura di Andrea Benfenati e Raffaele Fa-
rinaro, due studenti del Politecnico di Milano che hanno seguito con profitto
il corso da me tenuto di “Introduzione alla Fisica dei Quanti” (2° semestre del
2° anno della Laurea Triennale in Ingegneria Fisica). Andrea e Raffaele hanno
deciso di dedicare del tempo a favore dei loro colleghi, venendo incontro ad
una richiesta che mi veniva rinnovata di anno in anno da parte degli studenti
del corso, e che io non avevo mai trovato tempo e modo di soddisfare. Ven-
gono qui presentate le soluzioni di diversi temi d’esame del corso di cui sopra,
in particolare dei tredici il cui testo è incluso come appendice (sotto la voce
“Problemi”) nel mio libro “Fondamenti di Fisica Atomica e Quantistica”, edito
dalla EdiSES, che viene più volte richiamato anche nel presente testo con la
sigla FAQ. Ogni tema d’esame è composto da 6 problemi che fanno riferimen-
to ad altrettanti diversi argomenti trattati nel corso: tipicamente i primi 3 ai
primi 9 capitoli e gli altri 3 ai restanti capitoli di FAQ. Laddove la soluzione
al problema si trovasse già del tutto o in parte in FAQ, se ne indica il capitolo
e paragrafo (es.: vedi FAQ 3.4.1).

Franco Ciccacci

Milano, Febbraio 2016
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5 Esame

Problema 5.1. Una cella fotoelettrica è costituita da un tubo a vuoto con
due elettrodi metallici (emettitore E e collettore C) tra cui è possibile stabilire
una differenza di potenziale VCE. L’emettitore, una lastrina di rame (funzione
lavoro ΦCu = 4.5 eV) di superficie 1 cm2, è illuminato con una radiazione
elettromagnetica di lunghezza d’onda λ = 200 nm proveniente da una sorgente
monocromatica puntiforme di potenza P = 5 W posta a 20 cm dall’emettitore
stesso.

1. descrivere brevemente l’effetto fotoelettrico

2. trovare il numero di fotoni incidenti sull’emettitore per unità di tempo

3. fare un grafico qualitativo I(VCE) della corrente che circola nella cel-
la in funzione della differenza di potenziale tra emettitore e collettore
(specificandone il segno)

4. trovare il valore del potenziale per cui la corrente si annulla (specifican-
done il segno)

5. trovare il valore della corrente di saturazione (si assuma pari al 2% la
probabilità che un fotone dia luogo a un elettrone emesso)

6. Si ripeta il tutto nel caso che la sorgente monocromatica emetta onde di
lunghezza d’onda pari a 400 nm a parità di potenza.

Problema 5.2. Si consideri un elettrone confinato in una buca infinita uni-
dimensionale, cioè vincolato a muoversi in una sola direzione tra –a/2 < x <
a/2con a = 10 Å.

1. cosa si otterrebbe se si facesse la misura dell’energia dell’elettrone (espres-
sa in eV)?

2. si immagini di aver misurato l’energia e di aver trovato il valore più
basso tra quelli permessi (stato fondamentale): qual è la funzione d’onda
dell’elettrone subito dopo la misura (cioè al tempo t = 0)? Quale sarà la
funzione d’onda per tempi successivi (t > 0)? e la densità di probabilità
? Commentare il risultato.

3. si immagini ora di aver preparato il sistema al tempo t = 0 in modo che
facendo una misura si possa ottenere con ugual probabilità o il valore
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dell’energia dello stato fondamentale o quello subito superiore (primo
stato eccitato): qual’è la funzione d’onda Ψ(t = 0) in questo caso? E
quale sarà la funzione d’onda per tempi successivi (t > 0)? e la densità
di probabilità ? Commentare il risultato confrontandolo con il punto 2.

Problema 5.3. La serie di Balmer per l’idrogeno è costituita da righe nel
visibile (righe Hα,Hβ , Hγ rispettivamente a lunghezza d’onda pari a 0.656,
0.486 e 0.434 µm) seguite da righe nell’ultravioletto che si addensano fino al
“limite della serie” posto a 0.365 µm.

1. descrivere una possibile disposizione sperimentale per osservare tali righe

2. esprimere le energie delle righe in eV e spiegare quantitativamente l’ori-
gine della serie di Balmer alla luce del modello di Bohr

3. dire come cambierebbe lo spettro se una frazione pari al 33% degli atomi
di idrogeno fosse sostituita da atomi di deuterio (atomo con un solo
elettrone ma nucleo formato da un protone e un neutrone)

4. fare un grafico quantitativo dell’intensità in funzione della lunghezza
d’onda relativo al punto 3

Problema 5.4. La parte di spin della funzione d’onda (spinore) di un elet-
trone è data χ = A[(1 − 2i)χ+ + 2χ−]dove i è l’unita immaginaria, χ+ e χ−

sono gli autostati della componente z dello spin

1. determinare la costante A dalla condizione di normalizzazione della fun-
zione d’onda

2. cosa si otterrebbe dalla misura della componente z dello spin Ŝz )? (qua-
li sono i valori possibili? e con che probabilità?); trovare il valore di
aspettazione di Sz

3. cosa si otterrebbe dalla misura delle componenti x e y dello spin ( Ŝx e
Ŝy)? trovare i valori di aspettazione di Ŝx e Ŝy

4. cosa si otterrebbe dalla misura del quadrato del modulo dello spin ( Ŝ2

)?

Problema 5.5. Si dica cosa si intende rispettivamente per metallo di transi-
zione e terra rara. Si discuta in modo dettagliato e motivato la configurazione
elettronica di due di tali atomi per esempio il manganese (Mn, Z = 25) e
l’europio (Eu, Z = 63) Si trovi quanto valgono lo spin, il momento angolare
orbitale e quello totale in questi due atomi nello stato fondamentale
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Problema 5.6. Scrivere e commentare le distribuzioni di Fermi-Dirac e Bose-
Einstein. Discutere un esempio di applicazione per ciascuna di tali distribu-
zioni.
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5.1 Soluzione

Soluzione 5.1. Chiamiamo Seff la superficie del collettore e D la distanza
tra esso e l’emettitore.

1. Vedi FAQ par. 5.5

2. Possiamo calcolare il numero di fotoni al secondo dividendo la potenza
totale (energia/tempo) per l’energia del singolo fotone che sappiamo es-
sere Efotone = hυ = h c

λ
. Per calcolare la potenza totale dobbiamo stare

attenti nel considerare solo la superficie efficace che viene irraggiata:

Nfotoni/s =
P

Seff

Stot

Efotone

=
P

h c
λ

Seff

4πD2

≈ 1015
fotoni

secondo

3. Vedi FAQ par. 5.5

4. La corrente si annulla quando il potenziale riesce a respingere anche
gli elettroni più veloci (ovvero quelli che vengono espulsi dal livello di
Fermi): dalla legge di Einstein abbiamo che hυ = φ + eV0, per cui
troviamo

V0 =
1

e
(hν − φ) ≈ 1.68 eV

5. Dalla teoria sappiamo che l’emissione di un elettrone è istantanea, per
cui ogni fotone assorbito dà istantaneamente vita ad un elettrone in
movimento. Possiamo quindi calcolare la corrente come:

I =
cariche

tempo
= Nfotoni/s· q·α

≈ 3.2 µA

6. Abbiamo Nfotoni/s ≈ 2· 1015 fotoni
secondo ovvero il doppio rispetto al caso

precedente. Nonostante questo non c’è fotoemissione in quanto i fotoni
non sono abbastanza energetici. Infatti il quanto energetico hν = hc

λ
≈

3 eV è minore della della funzione lavoro della lastrina di rame.
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Soluzione 5.2. :

1. Se misurassimo il valore dell’energia otterremmo uno dei possibili auto-
valori dell’hamiltoniana, che nel caso di una buca infinita unidimensio-
nale sono dati da

En =
π2�2

2ma2
n2 = αn2 con α = 5· 10−20 J = 0.3 eV

per cui

E1 = 0.3 eV E2 = 1.2 eV E3 = 2.7 eV

e così via.

2. Facciamo la misura e troviamo che il sistema si trova nello stato fonda-
mentale, per cui E = E1 = 0.3 eV : in questo modo abbiamo provocato
un collasso della funzione d’onda, che nell’istante t = 0 diventa proprio
l’autofunzione corrispondente ad E1,ovvero

Ψ(x, 0) =

√

2

a
cos(

π

a
x)

Per tempi successivi però la funzione non rimane costante, mentre la sua
densità di probabilità sì, in quanto il sistema è collassato in uno stato
stazionario:

Ψ(x, t) =

√

2

a
cos(

πx

a
)e−i

E1

�
t |Ψ(x, t)|2 = |Ψ(x, 0)|2

3. Dobbiamo scrivere come la funzione d’onda come combinazione equipro-
babile dei primi due stati di una buca infinita unidimensione: abbiamo
quindi che

Ψ(x, 0) = Aψ1 +Bψ2

ma sappiamo che A2 = B2 per l’equiprobabilità ed andando a norma-
lizzare la funzione abbiamo che

ˆ

|Ψ(x, 0)|2dx = A2 +B2 = 1→ A2 =
1

2

Possiamo quindi scrivere che

Ψ(x, 0) =
1
√
2

√

2

a
cos(

π

a
x) +

1
√
2

√

2

a
sin(

π

a
2x)
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Per t > 0 si ha che

Ψ(x, t) =
1
√

2

√

2

a
cos(

π

a
x)e−i

E1

�
t +

1
√

2

√

2

a
sin(

π

a
2x)e−i

E2

�
t

per cui lo stato non è più stazionario e la densità di probabilità evolverà

nel tempo, a differenza del punto precedente. Andando a calcolare la

densità di probabilità abbiamo infatti

|Ψ(x, t)|2 =
1

a

∣

∣

∣
cos

(π

a
x
)

e−i
E1

�
t + sin

(π

a
2x

)

e−i
E2

�
t
∣

∣

∣

2

=
1

a

∣

∣

∣

∣

cos
(π

a
x
)

[

cos

(

E1

�
t

)

− i sin

(

E1

�
t

)]

+sin
(π

a
2x

)

[

cos

(

E2

�
t

)

− i sin

(

E2

�
t

)]
∣

∣

∣

∣

2

=
1

a

∣

∣

∣

∣

[

cos
(π

a
x
)

cos

(

E1

�
t

)

+ sin
(π

a
2x

)

cos

(

E2

�
t

)]

+i

[

− cos
(π

a
x
)

sin

(

E1

�
t

)

− sin
(π

a
2x

)

sin

(

E2

�
t

)]
∣

∣

∣

∣

2

=
1

a

{

cos2
(π

a
x
)

+ sin2
(π

a
2x

)

+ 2 cos
(π

a
x
)

sin
(π

a
2x

)

·

[

cos

(

E1

�
t

)

cos

(

E2

�
t

)

+ sin

(

E1

�
t

)

sin

(

E2

�
t

)]}

=
1

a

{

cos2
(π

a
x
)

+ sin2
(π

a
2x

)

+2 cos
(π

a
x
)

sin
(π

a
2x

)

cos

(

E1 − E2

�
t

)}

dove nel penultimo passaggio abbiamo calcolato il modulo quadro di un

generico numero complesso A+ iB come A2+B2 e nell’ultimo passaggio

abbiamo utilizzato la formula di sottrazione del coseno

cos (a− b) = cos (a) cos (b) + sin (a) sin (b)

La probabilità quindi oscilla nel tempo come un coseno il cui argomento

è proporzionale al ∆E.

Soluzione 5.3. La serie di Balmer rappresenta la serie di transizioni ottiche

da uno stato eccitato a quello con n = 2.

1. Vedi FAQ par. 6.1



Introduzione alla Fisica dei Quanti - Temi d’esame risolti 55

Figura 11: Schema emissione Balmer

2. Sappiamo che un elettrone che compie una transizione ottica emette
un’onda con energia pari alla differenza tra i due livelli,△E = hc

λ
, per cui

possiamo facilmente calcolare le energie corrispondenti alle lunghezze in
questione (per riconoscere le transizione sappiamo che lunghezze d’onda
maggiori corrispondono energie e quindi salti energetici minori):

△E3→2 = 1.88eV △E4→2 = 2.54eV △E5→2 = 2.85eV △E∞→2 = 3.39eV

3. Per esaminare il caso del deuterio bisogna prestare attenzione nel ride-
finire la costante di Rydberg che compare nella forma dell’energia: essa
infatti è diversa da R∞ poichè cambia la massa del nucleo: abbiamo
che R = R∞

µ
m , con µidrogeno =

(

1830

1831

)

e µdeuterio =
(

1830

1832

)

. Questa
correzione porta a livelli energetici leggermente diversi rispetto a quelli
dell’idrogeno e quindi diverse lunghezze d’onda:

λn→2,deuterio =
hc

△En→2

= − hc

Rdeuterio(
1

n2 − 1

4
)

da cui ricavo le varie lunghezze:

λ3→2 = 0.655µm λ4→2 = 0.485µm λ5→2 = 0.433µm λ∞→2 = 0.364µm
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Le lunghezze d’onda del deuterio sono tutte più piccole di circa un
nanometro rispetto a quelle dell’idrogeno.

4. Il grafico vedrà affiancate alla serie di Balmer dell’idrogeno quella del
deuterio (che è praticamente la stessa traslata di un nanometro) con
intensità che è la metà della prima (solo il 33% degli atomi è deuterio,
da cui seguono immediati i rapporti delle intensità).

Figura 12: Serie di Balmer dell’idrogeno con impurezze di deuterio pari ad 1/3
del totale. La differenza di intensità e resa attraverso lo spessore differente
delle linee di emissione.

Soluzione 5.4. Essendo la base formata da i due versori χ+ e χ− sappiamo
che s = 1

2
, per cui paliamo di un fermione.

1. Imponiamo la condizione di normalizzazione:

< χ|χ >= χ
∗·χ = 1 → A







1 + 2i

2






A







1− 2i

2






= 1

√
A =

√

1

3
→ χ =

1

3
[(1− 2i)χ+ + 2χ−]

2. Una misura della componente zeta dello spin non può che restituire
uno dei possibili autovalori dell’operatore associato alla grandezza. Nel
caso in questione abbiamo che i possibili autovalori di Sz sono ±�

2
. In

particolare si ha che P(Sz = +�

2
) = |1

3
(1 − 2i)|2 = 5

9
mentre P(Sz =






