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Introduzione

Questo testo intende essere una guida alla soluzione degli esercizi di Elettromagnetismo e Onde.
Gli esercizi sono ripresi da un testo molto diffuso ed oramai un classico quale il “Mazzoldi, Nigro e
Voci, Elementi di Fisica, Elettromagnetismo e onde” . Il presente testo utilizza, per la soluzione degli eser-
cizi, i risultati ottenuti dalla teoria dell’elettromagnetismo e delle onde. Pertanto, per ulteriori chiari-
menti si rimanda ai testi di teoria.

Nella soluzione degli esercizi di fisica puo essere vantaggioso utilizzare 1’approccio illustrato nel
diagramma di flusso riportato di seguito.

1. COMPRENDERE IL TESTO 2. Identificare grandezze note ed
incognite del problema

;(3. Identificare le leggi fisiche coinvolte]

e le relative formulazioni matematiche

!

4. Svolgere I’esercizio
senza esplicitare i calcoli numerici

i

5. Verificare la
correttezza
dimensionale del
risultato fisico e
la sua
ragionevolezza

[ 6. Esplicitare i calcoli numerici ]
E

7. Verificare la
ragionevolezza
del risultato
numerico




VI Introduzione

Tale approccio prevede cinque obiettivi intermedi e due operazioni di verifica prima di raggiun-
gere il risultato finale. Il primo obiettivo che lo studente si deve porre & quello di comprendere il testo
dell’esercizio, ovvero comprendere nei dettagli la struttura del sistema fisico proposto e capire quale
sia il risultato finale che ci viene chiesto di ottenere. A volte, qualora non sia fornito gia nel testo
dell’esercizio, & utile disegnare una rappresentazione schematica del problema.

11 secondo obiettivo & quello di identificare le grandezze i cui valori numerici sono noti e quelle
che, invece, devono essere calcolate a partire dalle grandezze note. In alcuni esercizi & possibile che
le grandezze note siano ridondanti, ovvero che alcune di esse non siano necessarie per la soluzione
del problema. Questa possibilita rispecchia la circostanza che nella soluzione di problemi reali spesso
si conosca il valore di un certo numero di grandezze fisiche ma che non si sappia quali, tra queste
grandezze, siano quelle strettamente necessarie per arrivare al risultato finale.

11 terzo obiettivo &, probabilmente, quello pitt complesso: una volta “capito” il problema & neces-
sario individuare le leggi fisiche coinvolte nella soluzione e le loro espressioni matematiche. A volte
e possibile seguire vie diverse, e tutte corrette, per risolvere il problema. Per esempio, se dobbiamo
calcolare I'energia complessiva dissipata su di una resistenza & possibile calcolare la potenza istanta-
nea dissipata sulla resistenza per effetto Joule e poi integrare tra I'istante iniziale ed un tempo infini-

2
to per calcolare I'energia totale dissipata [W = f i’ (t)Rdt]. In alternativa e possibile cercare I'origine
0

dell’energia dissipata sulla resistenza ed applicare il principio di conservazione dell’energia. Se, per
esempio, I'energia dissipata era inizialmente tutta immagazzinata in un capacitore che al tempo t =0
& carico a tensione V e che poi si scarica attraverso il resistore, allora I'energia totale dissipata sara
proprio quella inizialmente immagazzinata nel capacitore sotto forma di energia potenziale elettro-

statica|W = EC Vz]. In generale, sebbene entrambi gli approcci siano corretti, conviene seguire I’ap-

proccio pitt semplice dal punto di vista del calcolo e che, quindi, minimizza il tempo di svolgimento
dell’esercizio e la probabilita di errori durante lo svolgimento stesso: nel caso illustrato ’approccio
che utilizza la conservazione dell’energia & quello pit rapido e semplice.

A questo punto (quarto obiettivo), a partire dalle espressioni matematiche delle leggi fisiche, &
necessario svolgere i calcoli in forma simbolica senza ancora esplicitare i calcoli numerici. Una volta
ottenuta la formula risolutiva si pud procedere alla verifica della correttezza dimensionale: se, ad
esempio, a primo membro della formula risolutiva appare una resistenza elettrica, anche il secondo
membro deve avere le dimensioni di una resistenza elettrica. A titolo esemplificativo, se stiamo cal-
colando la resistenza di un tronco di cono (raggio base minore 4, base maggiore b e lunghezza d),
costituito da un materiale avente resistivita p,R = p;% & una soluzione dimensionalmente corretta,

3

mentre R :p—b e dimensionalmente sbagliata e, quindi, sicuramente fisicamente sbagliata. Tuttavia,
a

la correttezza dimensionale & condizione necessaria ma non sufficiente perché il risultato fisico sia vera-
mente corretto.
A valle di una verifica dimensionale, & possibile valutare la ragionevolezza del risultato nel caso

. ab . . .
della soluzione che potrebbe essere corretta R = p7: se si osserva con attenzione questa formula si
pie

nota che, se il cilindro tronco € molto corto (d — 0), la resistenza diverge, risultato palesemente non
verosimile (per il risultato corretto vedi esercizio 5.6 ). A questo punto, se il risultato non supera en-
trambe le verifiche, dopo aver attentamente verificato di non aver commesso qualche banale errore
algebrico nello svolgimento dell’esercizio, & necessario tornare al punto 3. del diagramma di flusso
ed analizzare criticamente le leggi fisiche coinvolte e le relative formulazioni matematiche.



Introduzione VII

Se, invece, l'esito di tali verifiche & positivo, & possibile passare allo svolgimento dei calcoli nume-
rici facendo molta attenzione a convertire le unita di misura delle varie grandezze fisiche coinvolte in
unita di misura dello stesso sistema di misura, in generale il sistema SI. L'ultima rapida verifica da
effettuare riguardera la ragionevolezza del risultato numerico: se, per esempio, l'esercizio chiede di
calcolare la velocita di una carica puntiforme di massa m sottoposta a forze elettrostatiche e tale ve-
locita risulta, in base ai nostri calcoli, maggiore della velocita della luce (c =3 - 10® m/s), allora & alta-
mente probabile che il risultato numerico sia errato. Alla stessa conclusione si giunge se, in base al
calcolo finale, la carica su un capacitore reale risulta pari a molti Coulomb. A questo punto € molto
probabile che vi sia stato un errore nel calcolo finale (attenzione ancora alle unita di misura!). Tutta-
via, se, a seguito di attenti controlli, il risultato numerico non ragionevole viene confermato, & necessa-
rio tornare al punto 3. del diagramma di flusso per verificare con attenzione I'impostazione del pro-
blema. Ovviamente, quest'ultima verifica & piuttosto delicata in quanto richiede, da parte dello
studente, una buona sensibilita a riguardo del significato intrinseco delle diverse grandezze fisiche.
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ESERCIZIO 6.1
Due griglie G, e G, metalliche parallele molto estese distanti d = 4 cm, tra %
le quali & applicata una d.d.p. V (V, > V), separano due regioni in cui esiste L:, B N
un campo magnetico B=0.8 T uniforme, ortogonale al piano del foglio. All'i- | », | .
stante ¢ = 0, nel punto A, viene iniettato un protone che attraversa la griglia oA
G, perpendicolarmente con velocita v,. Dopo un tempo t =122 - 107 sil * =° M
protone riattraversa G, con velocita v, nello stesso verso iniziale in un punto G d G,
A,, distante 1 =5.2 cm da A,. Calcolare: a) la velocita v, e v, del protone nelle
Figura 6.12

due regioni in cui c'¢ il campo magnetico e b) la d.d.p. AV applicata tra le
griglie.

Soluzione

La situazione ¢ illustrata schematicamente in figura 6.13. Il campo elet-
trico generato dalle due griglie, che costituiscono un doppio strato di cari-
ca, & confinato nella regione delimitata dalle griglie stesse, al di fuori di tale
regione il campo elettrico & nullo. Il protone viene iniettato nel punto A,
con velocita v,, attraversa la regione di spazio di spessore d dove si muove

di moto rettilineo uniformemente accelerato con accelerazione a = q—,
m
. . P
dove m, e g rappresentano la massa del protone e la sua carica, rispettiva- Figura 6.13

mente. In questa regione la velocita del protone aumenta: infatti, il protone
ha carica positiva e la forza elettrostatica & concorde al verso del campo elettrico. Il protone attraver-

sa quindi la seconda griglia con una velocita v, maggiore di v;. Il modulo della velocita v, si potra
. E . . .
esprimere come v, = v, +at* =v, + 9= ¢+, dove t* rappresenta il tempo necessario a percorrere la di-
m
2
stanza d. Una volta all'interno della regione a destra della seconda griglia, il protone si muovera,
mo

P2
.D
5 - Dopo aver

sotto 'effetto della forza di Lorentz, lungo una traiettoria circolare di raggio 7, =

percorso una semicirconferenza di raggio r, in un tempo pari al semiperiodo del moto circolare

T m, . o . e .
7= Z- B” il protone riattraversera la griglia come illustrato in figura 6.13. Nella regione tra le due
o q

griglie il protone sara soggetto di nuovo alla forza elettrostatica: questa volta il protone sara decele-
rato. La velocita con la quale il protone attraversa per la seconda volta la griglia di sinistra sara anco-
rav, ed il tempo impiegato per percorrere lo spazio che separa la griglia di destra da quella di sinistra
sara lo stesso t*. Il tempo totale intercorso tra i due attraversamenti consecutivi della griglia di sini-
stra sara pari alla somma del tempo per passare da G, a G, (*) piit il tempo per percorrere la semicir-
conferenza oltre la griglia G, (che & sempre T/2, dal momento che il periodo dipende da massa, carica
e campo magnetico, che non cambiano), piil il tempo per tornare da G, a G, (¢*) piit il tempo per
percorrere la semicirconferenza a sinistra della griglia G, (T/2),

2mm
t=2t*4+T =2t*+ L
qB

da cui:

27rm
1[t_

”]:2~1088
qB
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La velocita media del protone nel moto ad accelerazione costante tra le due griglie sara:

v2+vlzi Uz‘Hh:Zd

*

Nella regione a sinistra della prima griglia il protone si muovera ancora lungo una traiettoria

mov
circolare ma con un raggio pili piccolo 7, = ”Bl. La distanza & tra i punti A, e A, sara (vedi figura
6.13): 1

h=2r,—2r, = 2%(02 -0,

ovvero:

Bh
2_0122_
m,

A questo punto & possibile calcolare separatamente i valori di v, e v,:

vzz%+ﬂ:3~1063; — s =L g
t 4mp s A

L’aumento dell’energia cinetica del protone nello spostamento dalla prima alla seconda griglia
sara uguale al lavoro compiuto dalla forza elettrostatica:

T,-T, :%mﬁvi —%mpvf =qAV

Da questa equazione ricaviamo infine la differenza di potenziale tra le griglie:

m
AV =—2(0} — v} ) =4.18-10"V.
2q

ESERCIZIO0 6.12

Un ciclotrone ha un raggio R = 0.5 m e opera con una radiofrequenza accelerante di frequenza
Vg = 12 MHz. Calcolare: a) il valore del campo magnetico B per accelerare deutoni (11, = 2m,, carica e
=1.6-10" C) eb) I'energia cinetica massima E, . dei deutoni.

Soluzione

Per un ciclotrone, il campo magnetico & legato alla pulsazione wy; = 27vy, del campo elettrico ap-
plicato dalla relazione

B="%r _ 1577
e

La velocita massima dei deutoni, per un ciclotrone di raggio R sara
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v =w,R=377-102
S

L’energia cinetica massima risultera essere

2 =225.10 *J =1.4 GeV.

max

1
kemax Emdv

NOTA - IL CICLOTRONE. Un metodo per accelerare particelle cariche,
realizzato nel 1934 da Lawrence e Livingstone, consiste nella ripetu-
ta applicazione di una differenza di potenziale elettrico. La macchi-
na si chiama ciclotrone e funziona secondo lo schema seguente (fi-
gura 6.14): tra due cavita metalliche semicilindriche, chiamate D per
laloro forma a d maiuscola, viene applicata una forza elettromotrice v, cos a1

V =V, cosw,t che varia nel tempo t con una pulsazione o,; le cavita

sono immerse in un campo magnetico uniforme B ad esse ortogona- Figura 6.14

le.

La particella di massa m e carica g viene iniettata al tempo t = 0 nel sistema dalla sorgente S che si
trova al centro del ciclotrone e viene accelerata dalla differenza di potenziale V| esistente in quell’i-
stante tra le due D. La particella entra in D,, al cui interno il campo elettrico & sostanzialmente nullo,
mo,

qB
la velocita acquisita a seguito dell’applicazione della forza elettrostatica. Tale velocita si puo facil-
mente calcolare considerando che 1’energia cinetica finale della particella ¢ pari al lavoro del campo

e viene deviata dalla forza di Lorentz compiendo una semicirconferenza di raggio 1, = dovew, e

. 1
elettrico presente tra le due D: Emvf =qV,.

T r,
Dopo un tempo ¢, = 3= ARG % la particella esce da D, per entrare in D,. Se la pulsazione
o v

RN . B . . .

o, della forza elettromotrice & proprio w,= tz =22 el tempo t, la differenza di potenziale tra D, e D,

m
1

si sara invertita assumendo il valore —V|;: 1a particella carica subisce una seconda accelerazione tra D,

e D, tale che

1 1
Emv§ = Emvf +qV, =2qV,

mov
Una volta entrata in D, la particella compie una semicirconferenza di raggio r, = —BZ > 7, nel
tempo

=—=t
* v, 4qB

1

identico al precedente (il tempo di percorrenza di un’orbita circolare in campo magnetico non dipen-
de dalla velocita della particella). Di conseguenza, il periodo per un giro completo sara
_ 2mm

T=t +t,="—
1 2 qB



142 Capitolo 6 - Campo magnetico. Forza magnetica

Se intanto nel tempo ¢, la radiofrequenza ha cambiato di nuovo segno, il processo di accelerazione
si ripete tra D, e D, e cosi via.

La condizione di funzionamento & dunque che il tempo t impiegato a percorrere mezzo giro sia
eguale al semiperiodo della forza elettromotrice variabile, ovvero:

Il processo continua finché lo ione raggiunge il raggio massimo R, determinato dalle dimensioni
del magnete del ciclotrone. A tale raggio corrisponde la velocita massima dello ione

- _ gBR
Vppr = wOR -
m
e quindi I'energia cinetica massima
2p2p2
Ek max = lmvfmr = q B R ‘
' 2 } 2m

ESERCIZIO0 6.13

Coni dati dell’Esercizio 6.12, nell’ipotesi che trale due D del ciclotrone venga applicata una d.d.p.
V =V, cos (wyt) con Vy=14-10*V e w,, =7.53 - 107 s7, calcolare: a) il numero N di giri compiuto dai
deutoni nel ciclotrone durante un ciclo di accelerazione e b) la durata t del ciclo stesso.

Soluzione

Per ogni ciclo I'energia del deutone aumenta di 2eV,. L’energia massima ¢ pari a

e’B’R?

k,max

E

2m,

Il numero complessivo di cicli necessari per raggiungere 1’'energia massima sara dunque

E 212
— k,max — eB R — 500
2eV, 4Vym,
La durata del singolo ciclo sara pari a
T=2"% _§34.10"
eB

Infine, il tempo totale impiegato a raggiungere I’energia massima sara uguale al periodo T neces-
sario per completare un ciclo moltiplicato il numero totale di cicli

t,=NT=4.17 ys
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Per ottenere questo risultato abbiamo sfruttato la circostanza che la distanza tra le due D del sin-
crotrone & molto piccola in modo tale che si possa trascurare il tempo necessario a percorrere lo spa-
zio che le separa.

ESERCIZIO 6.14

Quando un nastro conduttore di spessore /1 = 15 mm, attraversato da una corrente i =12 A, viene
posto in un campo magnetico B =1.8 T si rivela una tensione di Hall &, = 0.122 V. Calcolare il nu-
mero di portatori di carica per unita di volume ..

Soluzione

In questo esercizio 'effetto Hall viene utilizzato per determi-
nare la concentrazione n dei portatori di carica. Si supponga di
avere un conduttore con sezione X = hb percorso da corrente i
lungo la direzione x come in figura 6.15. Possiamo quindi scrive-
re la densita di corrente come:

i
J=—u_=nev,

hb

Figura 6.15

dove v, & la velocita di deriva. Applicando un campo magnetico
lungo la direzione y, sui portatori di carica agisce una forza di
Lorentz pari a F = ev, X B. Pertanto, possiamo definire un campo elettromotore detto campo di Hall

EHZE:UdXB:LXB
e ne

dove e rappresenta la carica dei portatori ed 7 la loro concentrazione.

Il campo E,, perpendicolare alla velocita di deriva, causa una deflessione dei portatori di carica
provocando ’accumulo di cariche di segno opposto sulle facce ortogonali all’asse z. Il doppio strato
di carica che cosi viene generato, genera a sua volta un campo E,, di verso opposto a E,. Quando sara
stata raggiunta la configurazione di equilibrio, avremo che: E,; + E,; = 0. In queste condizioni, tra i
due lati del nastro a distanza & si manifesta una f.e.m. (tensione di Hall) pari a

&, =E.h
Essendo ] e B ortogonali tra di loro, possiamo scrivere il modulo della tensione di Hall come:

¢ —Eh—LBi——p
ne neb

Da quest’ultima espressione si pud calcolare il numero dei portatori di carica:

iB elettroni
~ :7,38‘1028—3.

r'wHe
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ESERCIZIO 6.15

Una lamina metallica quadrata di rame, con le dimensioni riportate in figu- B
ra 6.16, € percorsa da una corrente i = 10 A ed & sottoposta all’azione di un
campo magnetico B=1.5T. Calcolare: a) la velocita di deriva v, degli elettroni /
eb)la f.em. di Hall &,. La densita di elettroni liberi nel rame & 1, = 8.48 - 10%® =1 mm y
m. k?o,%
Soluzione Figura 6.16

La densita di corrente associata alla corrente i che scorre lungo la lamina sara pari a

i A
=—=510"—
J hb m’
dove h & la larghezza della lamina, b il suo spessore. Questa relazione consente di calcolare il valore
della velocita di deriva degli elettroni, conoscendone la carica e la concentrazione:

o,=L =37.10°2
ne S

0

Nelle condizioni geometriche descritte nella figura 6.16, per effetto della forza di Lorentz che
agisce sugli elettroni, si genera un campo elettrico trasversale detto campo di Hall il cui valore &:

IB
ne

e

E =

H

Tale campo elettrico genera, a sua volta, una forza elettromotrice trasversale pari al valore del
campo di Hall moltiplicato per la larghezza della lamina h

/B
¢, =E.h :n—eeh =1.1uV.

ESERCIZI0 6.16

Una lamina di rame (11, = 8.48 - 10% elettroni/ m?) ha le dimensioni riporta- B
te in figura 6.17 ed & percorsa da una corrente i =20 A. Essa viene utilizzata
come sonda per la misura di campi magnetici. Calcolare i valori di B per i

valori misurati della f.e.m. di Hall: & =1pV, é,=2uVe &=25uV. b=01mm /l
% >
2()1%
Soluzione
Figura 6.17

Avendo chiamato /1 1a larghezza della lamina e b il suo spessore, la densita
di corrente e la velocita di deriva possono essere espresse come:

i ] m
:—:]07Am2; =—==737-10"—
=% / o s

e
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Il valore del raggio del diottro & negativo e, secondo le convenzioni adottate, questo implica che
il diottro sia concavo.

ESERCIZI012.18

Su un foglio di un quotidiano & appoggiata una lastra di vetro (1 = 1.5) di spessore 1 =2 cm. Cal-
colare a quale distanza apparira il foglio se osservato in direzione normale al foglio stesso.

Soluzione

L'osservatore legge il giornale guardando lungo la normale e attraverso la lastra A
di vetro (figura 12.24). Poiché il diametro della cornea & molto minore della distan- \ /
za tral’occhio ed il giornale, soltanto quei raggi che sono molto vicini alla normale ‘\ /4

potranno superare la cornea e contribuire a formare un’immagine dell’oggetto S \ /
sulla retina. Questa condizione implica che, rispetto alla superficie di separazione | » | \
vetro aria, sia ’angolo di incidenza & che 1’angolo di rifrazione ¢’ siano molto pic- 3
coli.

Per la rifrazione vale la legge

sina’ =mnsin o

Inoltre, essendo a e o’ molto piccoli, abbiamo sina ~ tan e e sin o’ =
nsina ~ ntana.

In figura 12.25 sono mostrati due raggi emessi dalla sorgente S che
vengono rifratti alla superficie di separazione tra vetro ed aria. L'imma- 4" »
gine virtuale Q si forma sul prolungamento ideale dei raggi rifratti, ad
una profondita /. Se consideriamo il triangolo SOO” possiamo scrivere

/
tano = % ~sin a. Analogamente, per il triangolo QOO’, possiamo Figura 12.25

/

scrivere tan o' =
zioni otteniamo

— ~sin o/. Facendo il rapporto tra queste due rela-

sin o’ sina__ h

sin o sina K

dacui b = % =1.33cm.

. . . . I 7]
Allo stesso risultato si poteva giungere utilizzando lalegge dei diottri -+ —= =

poq
caso il diottro & rappresentato dalla superficie di separazione tra vetro ed aria. La superficie di sepa-

razione & piana, il che corrisponde ad un raggio di curvatura infinito (R = co). Il punto S rappresenta
I'oggetto e si trova ad una distanza i dal diottro. La posizione dell'immagine Q si trova ad una di-
stanza h” dal diottro. Infine n, = n ed 1, = 1. In queste condizioni I’equazione del diottro diviene

n,—1n
——L. Inquesto
R

24_1/:0 SN We—t_ 133em
h h n

Il valore negativo di /’, in accordo con la convenzione utilizzata, indica che I'immagine virtuale
si forma all’interno del vetro, prima del diottro (superficie di separazione vetro/aria).
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ESERCIZI0 1219

Una sferetta colorata di 1.5 cm di diametro & posta sul fondo di un recipiente pieno di un liquido
(n=1.42). Osservandola normalmente la sferetta appare ad una profondita 1’ = 35.2 cm. Calcolare la
profondita h del recipiente e il diametro apparente della sferetta.

Soluzione

Seguendo il medesimo ragionamento seguito nell’Esercizio 12.18 pos- (A
siamo scrivere I'equazione del diottro costituito dalla superficie di separa-
zione tra liquido ed aria. Il valore di /', in base alle convenzioni adottate,
sara negativo.

n 1

—+—=0 ——> h=-nh'=50cm h
ho h |
Lingrandimento sara Figura 12.26
!/
=My
h

L'immagine virtuale ¢ diritta ed ha le stesse dimensioni dell’oggetto.

ESERCIZI012.20

Una lastra di vetro (11, = 1.6) di spessore 1 =5 cm @ posta sul fondo di un n
acquario profondo p =12 cm. Calcolare lo spessore apparente /" della lastra. ‘

i |
Soluzione ‘ o }

Ancora una volta ragioniamo in analogia a quanto fatto negli Esercizi 12.18
€ 12.19. Questa volta, perd abbiamo due diottri che agiscono insieme: il primo Figura 12.27

& costituito dalla superficie di separazione vetro/acqua, il secondo dalla aria

superficie di separazione acqua/aria. Per entrambi i diottri R = co. Per |
prima cosa consideriamo Ieffetto che il diottro vetro/acqua ha sull'im- %
magine del fondo della lastra di vetro utilizzando I'equazione del diottro acqua %
P |
h'
o — nzh — i | ‘
7+q_1—0 —_ q, __17_3__416 cm ,‘L oo {‘[1

g, rappresenta la profondita dell’immagine rispetto all’interfaccia vetro/
acqua, il suo valore & negativo in base alle convenzioni adottate perché Figura 12.28
I'immagine si forma prima del diottro vetro/acqua. L'immagine del fondo del vetro si forma 0.84 cm
al di sopra del fondo reale della lastra di vetro. Tale immagine funge da oggetto per il secondo diottro
acqua/ aria. La distanza apparente del fondo della lastra dalla superficie di separazione acqua/ aria &
p’' =p-h-q,=11.16 cm. Anche in questo caso possiamo utilizzare 1'equazione del diottro per calco-
lare la posizione apparente del fondo del vetro vista da un osservatore in aria
/
”_2/+l:0 — g, :—%:—8.39 cm

qZ 2



Capitolo 12 . Ottica geometrica 295

In definitiva g, rappresenta la profondita apparente della lastra per un osservatore in aria.
A questo punto & necessario valutare 'effetto del diottro acqua/aria sulla posizione apparente
della superficie (superiore) della lastra di vetro. Ancora una volta scrivendo 1'equazione del diottro

si ottiene
L+l:0 %:_P—h:_526cm
p—l’l q3 n,

L'immagine della superficie della lastra di vetro si forma 5.26 cm sotto la superficie dell’acqua. Lo
spessore apparente della lastra sara infine

W =|q,|—|q,| =3.13 em.

ESERCIZI0 12.21

Quattro lenti sottili di vetro (n = 1.5) hanno rispettivamente i seguenti raggi di curvatura: a) R, =
10 em, R, =-20 cm; b) R, = 00, R, =-10 em; ¢) R, =-10 cm, R, =10 cm; d) R, = oo, R, =20 cm. Fare uno
schizzo di ciascuna lente, calcolando la sua distanza focale f e il suo potere convergente P (in aria).
Verificare che ruotando la lente di 180° la focale non varia.

Soluzione

La distanza focale della lente, con 1, = 1 (lente in aria), &

jo L _RR
n—1R,—R,

Il potere convergente P & pari a 1/f.

Ruotare la lente di 180° implica cambiare i raggi di curvatura secondo la regola R, — -R, e
R,—-R,.

Di conseguenza la distanza focale della lente ruotata di 180° sara

f/: 1 (_RZ)(_Rl): 1 RR,
n—1 —R +R, n—1R,—R,

identica a quella della lente nella posizione originaria.

Per quanto riguarda le lenti indicate nel testo dell’esercizio, utilizzan-
do la formula per il calcolo della lunghezza focale sopra riportata, si ot-

tiene:
a) f=+133cm, P= %c = +7.5 diottrie (m™), lente biconvessa conver- 2) b) © 4
gente; Figura 12.29

b) f=+20cm, P =+5, diottrie, lente piano-convessa convergente;
¢) f=-10cm, P =10, diottrie, lente biconcava divergente;

d) f=—-40cm, P =-2.5, diottrie, piano-concava divergente.
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Si presti attenzione alla circostanza che il potere convergente di una lente [P = /f) € misurato in

diottrie o m™'. Pertanto, prima di invertire la distanza focale per calcolare il potere convergente della
lente & necessario convertire la distanza focale in m.

NOTA SULLE CONVENZIONI PER LE LENTI SOTTILI

a) laluce incidente proviene sempre da sinistra;

b) la distanza p di un oggetto P dalla lente & positiva se I'oggetto
si trova a sinistra della lente, negativa se 1'oggetto & a destra
della lente;

c) la distanza q dell'immagine Q dalla lente & positiva se I'imma- ‘
gine si trova a destra della lente, negativa se 'immagine ¢ a si-
nistra;

d) il raggio di curvatura R della superficie sferica & positivo se il
centro di curvatura si trova a destra della lente, negativo se il
centro di curvatura & a sinistra della lente (figura 12.30);

e) le distanze y dall’asse della lente sono positive per punti al di sopra dell’asse, negative per punti
al di sotto, sia per gli oggetti che per le immagini.

Figura 12.30

ESERCIZI012.22

Tre lenti sottili di vetro (n=1.5) hanno rispettivamente i seguenti raggi di curvatura: a) R, =20 cm,
R,=10cm; b) R,=10 cm, R,=20 cm; ¢) R, =-10 cm, R, =-20 cm. Fare uno schizzo di ciascuna lente,
calcolando la sua focale f e il suo potere convergente P.

Soluzione

Il profilo delle lenti & mostrato in figura 12.31 dove & stata utilizzata
per il disegno la regola per R introdotta nella nota all’Esercizio 12.21.
s 1 RR, . .
Utilizzando la formula f = ———1—2— per la distanza focale ottenia- ) b) )
n—1R,—R,
mo
Figura 12.31

a) f=-40 cm, P =-2.5 diottrie, lente divergente;
b) f=+40 cm, P=+2.5 diottrie, lente convergente;
¢) f=-40 cm, P =-2.5 diottrie, lente divergente.

ESERCIZI012.23

Per realizzare due lenti sottili simmetriche si usa un vetro d’indice di rifrazione n = 1.6. Calcolare
il raggio di curvatura R se la distanza focale in aria & rispettivamente f, =5 cm e f, = -5 cm.

Soluzione

Per una lente sottile simmetrica R, = —R, = R. La distanza focale sara quindi

1 R Y
— ——> R=2(n-1
n—12 ( )f Figura 12.32

b)

f=
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ESERCIZI015.26

Una pallottola, di lunghezza I =2 cm e massa m = 40 g, viaggia ad una velocita v =1.5 - 10> m/s.
Calcolare: la lunghezza d’onda di de Broglie 4, della pallottola e a quante lunghezze d’onda 4, & pari
la lunghezza I della pallottola.

Soluzione

La “lunghezza d’onda” di una pallottola, in base alla relazione di de Broglie, & pari a:

Aok 110009
p, mv
da cui
[=2-10"2,

Come si vede la “lunghezza d’onda” della pallottola & estremamente piccola, anche se paragonata
alle dimensioni del nucleo atomico. In queste condizioni non potrebbe essere concepito alcun esperi-
mento per misurare una 4, di de Broglie come quella calcolata: la pallottola ¢ da considerarsi, a tutti gli
effetti, una particella classica il cui comportamento & descritto dalle leggi della meccanica classica.

ESERCIZI015.27

Un fascio di elettroni di energia cinetica E, = 65 eV viene diffratto da un cristallo, come nel caso
dei raggi X. Il massimo del primo ordine viene osservato per un angolo radente 6 = 45°. Calcolare la
distanza d tra i piani del cristallo.

Soluzione

La lunghezza d’onda del fascio di elettroni con energia pari a E,(eV) ¢ data dalla solita espressione:
-9

P 1.226-10

E (eV)

=152-10 “m

Possiamo calcolare la distanza d tra i piani del cristallo utilizzando la legge di Bragg. Abbiamo
interferenza costruttiva quando sono verificate le condizioni di Bragg

2dsinf=unl, n=1,2,3..

Si presti attenzione alla circostanza che nella formula di Bragg 0 rappresenta l’angolo di radenza,
ovverosia I’angolo che il fascio incidente forma con il piano cristallografico. Pertanto, al primo ordine
(n=1), per @ = 45° abbiamo

A

d=—"2—=1.075-10""m.
2sin 6

ESERCIZ1015.28

Un fascio di elettroni incide nel vuoto su due fenditure parallele molto strette, distanti
d =0.05 um; la figura d’interferenza & osservata su uno schermo distante L = 20 cm dal piano del-
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le fenditure. La distanza tra due frange chiare adiacenti risulta 0.6 mm. Calcolare la velocita v,
degli elettroni.

Soluzione

L'esperimento a doppia fenditura o esperimento di Young con particelle quantistiche &, probabil-
mente, uno dei pil significativi esperimenti della fisica moderna. Richard Feynman, eminente fisico
teorico statunitense del secolo scorso, era solito dire che questo esperimento “...sta al cuore della
meccanica quantistica. In realta ne contiene I"unico mistero.”

In figura viene mostrato ’esperimento a doppia fenditura. Nel primo caso (in alto) viene utilizza-
ta radiazione elettromagnetica che, dopo essere passata attraverso le due fenditure, forma una imma-
gine d’interferenza sullo schermo. Questo fenomeno & stato ampiamente discusso nei capitoli 13 e 14.
Nel caso intermedio viene considerato un flusso di particelle macroscopiche, ad esempio palle da
tennis lanciate in rapida successione da un tennista.

Infine, in basso viene inviato verso
le fenditure un flusso di particelle quan-
tistiche come gli elettroni.

Nel caso intermedio sullo schermo - >

[T X .. onde
non ¢ visibile alcuna figura di interfe-  jcqromagnetiche
renza ma solo due massimi, approssi-
mativamente in corrispondenza delle  aiie da rennis
due fenditure. Questo risultato non ¢
sorprendente in quanto, come abbiamo Q

2

o

o

(*) % OO % Immagine
visto nell’Esercizio 15.26, gli oggetti o © OO 0o %%88 % sullo schermo
macroscopici, quali sono a tutti gli effet- ‘& o OQD Q%OQD
ti le palline da tennis, obbediscono alle " ® &
leggi della meccanica classica: essi pos-
siedono di fatto una lunghezza d’onda ~ cletroni . .: —
di de Broglie talmente piccola da rende- :%2 . :. " _. . " ’-:-E
re impensabile la realizzazione di un . |-: ya—
esperimento per mettere in mostra gli Tl e
aspetti ondulatori (interferenza, diffra-

Figura 15.5

zione, ecc.). Nel caso degli elettroni, in-
vece, appare sullo schermo una eviden-
te figura di interferenza che & necessariamente legata alla natura ondulatoria degli elettroni. Le
proprieta dell'immagine di interferenza sullo schermo possono essere completamente spiegate tra-
mite le espressioni sviluppate nei capitoli 13 e 14 (e che qui semplicemente richiameremo) a patto di
attribuire agli elettroni una lunghezza d’onda pari alla lunghezza d’onda di de Broglie.

Nell’esperimento di Young a doppia fenditura le condizioni per i massimi ed i minimi d’intensita
nella figura di interferenza sono

interferenza costruttiva: x = m%, m=0,+1,4+2,+3...

. . . AL
interferenza distruttiva: x,, = (2m+ 1)ﬂ m=0,+1,+£2,£3..

dove x rappresenta la posizione dei massimi (0 minimi) misurata dal centro dello schermo, L & la
distanza tra il piano contenente le fenditure e il piano dello schermo, d la distanza tra le fenditure e
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la lunghezza d’onda della radiazione. Per ulteriori dettagli lo studente pud fare riferimento ai capi-
toli 13 e 14.

Nel caso presente, A rappresentera la lunghezza d’onda di de Broglie degli elettroni.

Pertanto, detta Ax la distanza tra due frange chiare adiacenti (di indice m e m + 1), si ha:
AL 2L AL

X = (M A1) =2 —m= — A:d%

A'x = xmrzx,m+1 M oaxm d d d

da cui, utilizzando la relazione di de Broglie, otteniamo

_h_ L
A dAx
Infine, la velocita degli elettroni sara
o =P M _ygqg™
m, dAxm, s

ESERCIZI015.29

Un fascio di neutroni termici di velocita v =10° m/s incide su un sistema di due fenditure paral-
lele distanti d =1 mm; i rivelatori sono posti a L =10 m di distanza dal piano delle fenditure. Calco-
lare la distanza Ax tra due punti adiacenti in cui non si osservano neutroni.

Soluzione

Questo esercizio & analogo al precedente, con la differenza che i corpuscoli da trattare sono neu-
troni, e che dobbiamo valutare la distanza tra i minimi.
La lunghezza d’onda associata al fascio di neutroni ¢ data dalla relazione di de Broglie
h h

A =—=——=397-10 "m
le mﬂv

Pertanto Ax ovvero la distanza tra due minimi adiacenti della figura di interferenza in cui non si
osservano neutroni, sara (vedi Esercizio 15.28) pari a

AL AL

Ax = X —=—=23.97 um.
2d d

'xmin,m+1 min,m

AL
= (2m+3)2—d—(2m+1)

ESERCIZI015.30

Un fascio di neutroni con energia cinetica E, = 50 MeV incide su un sottile foglio di grafite. Misu-
rando il numero di neutroni diffusi da urti con nuclei di carbonio in funzione dell’angolo 6 tra la di-
rezione uscente e la direzione incidente si trova una tipica figura di diffrazione con il primo minimo
per sinf = 0.822. Calcolare il raggio R del nucleo di carbonio.
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Soluzione

Quando il fascio di neutroni passa at-
traverso una apertura circolare forma, in -

condizioni di Fraunhofer, una figura di | %P |
diffrazione costituita da un disco lumino- p i ¢ . d
so centrale circondato da una serie di co- | *& d |
rone circolari. I neutroni sono particelle i

prive di carica elettrica, pertanto la loro A L

interazione con gli elettroni che circonda-

no il nucleo & molto debole. Invece il loro Figura 15.6

momento magnetico interagisce significa-

tivamente con il momento magnetico del nucleo atomico. Pertanto, & ragionevole pensare che i neu-
troni siano diffusi dai nuclei di carbonio. L’esperimento & mostrato in figura 15.6: un fascio di neutro-
ni investe il nucleo di un atomo di carbonio di diametro D, viene diffuso e forma un’immagine di
diffrazione su di uno schermo a distanza L dall’atomo di carbonio (L > D). Cid premesso, I’angolo a
cui cade il primo minimo di intensita (anello scuro nell'immagine), si ottiene dalla relazione:

sin 0= 0.61h
R

dove R = D/2 @il raggio del nucleo atomico del carbonio. Questa espressione, che si ricava tramite
una laboriosa dimostrazione che qui non ripetiamo, si pud trovare nei testi di teoria della diffrazione.
La lunghezza d’onda dei neutroni sara data dall’espressione gia ricavata nell’Esercizio 15.24

A,= b =4.05-10"m
2m E

n "k

Utilizzando tale valore della lunghezza d’onda del neutrone otteniamo il valore del raggio del
nucleo dell’atomo di carbonio

R:0.61%—”m3-10’15m
sin 6

In conclusione si osservi che la scelta di neutroni con energia E, = 5 MeV, e quindi 4, = 4.05 - 10
m, non & casuale, dovendo la lunghezza d’onda del fascio di corpuscoli incidenti essere confrontabi-
le con le dimensioni dei nuclei per un efficace effetto di diffrazione.

ESERCIZIO 15.31

Una particella quantistica confinata a muoversi lungo 1’asse x & rappresentata da una funzione
:

d’onda indipendente dal tempo ¥(x) = Ae 7, con A costante e B pari a 10"® m? Si stimi l'indetermi-
nazione sulla posizione della particella e I'indeterminazione sulla sua quantita di moto.

Soluzione

La densita di probabilita di trovare la particella quantistica in un punto di ascissa x & proporzio-

nale al modulo quadro della funzione d’onda ¥(x) = Ae *:
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P(x)ox | ‘I’(x)|2 = Azef%z

Tale funzione rappresenta una distribuzione di tipo
gaussiano la cui larghezza a mezza altezza é:

unita arbitrarie

0.5
Ax=4B/2=7-10"m

Ax rappresenta anche l'indeterminazione sulla posizione

della particella, nel senso che la probabilita di trovare la parti-

| S

cella ¢ alta soltanto nell’intervallo —%\/B/ 2<x< +%\/ B/2

vedi figura 15.7.
Pertanto, in base al principio di Heisenberg, I'indeter-
minazione sulla quantita di moto sara

Ap, = L 10 *Ns.
Ax

x

ESERCIZI015.32

—2 -1 0 1 2

unita arbitrarie

Figura 15.7

Un elettrone alla temperatura dello zero assoluto T = 0 K si trova in una cella cubica di lato 2L =
1 um all’interno della quale la sua posizione & completamente indeterminata. Calcolare I’energia ci-
netica E, dell’elettrone, derivante da questa indeterminazione. In base a questa considerazione un
elettrone, anche allo zero assoluto, ha un’energia E, non nulla. Questo risultato della meccanica on-

dulatoria prende il nome di energia del punto zero.

Soluzione

L'indeterminazione per ciascun grado di liberta sulla quantita di
moto e

Ax:Ay:Az:2L R Apx:Apy:Apzzzh_L

Se la quantita di moto & indeterminata, anche l'energia dell'elet-
trone ¢ indeterminata.
L'energia massima associata a tale indeterminazione &

E—-L1 Ap2+Apz+Ap2]:ii2:29-1o-8ev
©oom bttt Y am |21 '

e

In altri termini possiamo affermare che, anche alla temperatura

2L
2L
o
2L e °

A

Figura 15.8

T=0K, l'elettrone possiede un’energia detta di punto zero. Questo & un effetto puramente quantisti-

co che non trova riscontro nella fisica classica dove l'energia termica di un elettrone vale EKBT e

tende a zero per T che tende a 0 K.
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