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7 Esempi classici

Problema 7.0.1 Moto di un pendolo semplice

Quando I’energia meccanica si conserva, la
sua derivata rispetto al tempo ci fornisce un modo pra-
tico per ricavare la legge oraria per almeno una del- ;
le grandezze dinamiche in gioco. Consideriamo un ;I
pendolo semplice, con una massa m (punto materia- 2/ 0% |, | ecos®)
le) appeso ad un filo ideale di lunghezza ¢, come in "
figura.

.................................

Ad un qualunque istante del moto del pendolo
sappiamo che I’energia meccanica totale si conserva:

1
E(t) = Emvz (t) +mgh(t) = costante,

dove v(t) = £8(t) & la velocita del pendolo al tempo ¢ e h(t) = £+ ho — £cos O(t) &
I’altezza a cui questo si trova al tempo ¢. Per via della conservazione, sappiamo che
E(t) = 0, che si traduce nella seguente equazione:

0 = Imf(200)8(0)) + mg (L (~sinb(1)8(r).

= 0(r)+gsin0(r), :>é(t):f%sin9(t),

che, nell’approssimazione di piccole oscillazioni (sin 0 (z) ~ 6(t)) porta a

6(1) = -0?6(1), o= %

che ¢ la ben nota equazione del moto per il pendolo semplice in regime di piccole
oscillazioni, ossia I’equazione del moto armonico semplice.

Utilita pratica.

La conoscenza dell’equazione del moto per un sistema fisico cosi sem-
plice permette — dalla misura di alcune grandezze fisiche quali il periodo
(T =27/ w) o la lunghezza del pendolo — di stimare il valore di una costante
fondamentale, come 1’accelerazione gravitazionale.

117



118 7.0.2. Moto di un sistema molla - punto materiale

Problema 7.0.2 Moto di un sistema molla - punto materiale

Analogamente al caso affrontato nel problema
precedente, quando 1’energia meccanica si conserva,
la sua derivata rispetto al tempo ci fornisce un mo- X
do pratico per ricavare la legge oraria per almeno una V\N\N‘! #i
delle grandezze dinamiche in gioco. Consideriamo un -
sistema dove un punto materiale di massa m ¢ legato
ad una molla ideale, comprimendola di una lunghezza
Ax rispetto alla posizione di equilibrio xp, come in figura.

Ad un qualunque istante del moto del pendolo sappiamo che 1’energia mecca-
nica totale si conserva:

1 1
E(r) = Emvz (t)+ Ekx2 () = costante,

dove v(t) = %(¢) & la velocita del punto materiale al tempo e x(r) & la posizione in
cui questo si trova al tempo ¢. Per via della conservazione, sappiamo che E(¢) = 0,
che si traduce nella seguente equazione:

1 e 1 .
0 = Sm (2%(2)(r)) + Ek (2x(2)x(1)),
= mi(t) + kx(t), = i) = —%x(t),

che puo essere scritta nella forma

i(t) = —0’x(1), o= %,

che ¢, come nel caso del problema precedente, 1’equazione del moto armonico sem-
plice, la cui soluzione generale ¢ del tipo

x(t) = Asin (0t + ¢),

dove I’ampiezza di oscillazione A e la phase ¢ possono essere calcolati una volta
fissate le condizioni iniziali.

Utilita pratica.

La conoscenza dell’equazione del moto per un sistema fisico cosi semplice
permette — dalla misura di alcune grandezze fisiche quali il periodo (T =
2n/w) o la massa del blocco — di stimare il valore della costante elastica
della molla.
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Problema 7.0.3 Moto di un pendolo di torsione

Un pendolo di torsione ¢ un sistema composto da
un filo sottile, generalmente in metallo, a cui & appeso un
corpo, solitamente una sfera di piombo. 1l filo ¢ avvolto
su se stesso in modo che, quando viene ruotato attorno ‘
al suo asse, si sviluppi una torsione. Quando il filo viene r o 7
rilasciato, il pendolo inizia a oscillare lungo 1’asse del filo, N2
come in figura. La torsione del filo produce una forza di :
richiamo, nota come momento di torsione, che agisce sul
pendolo. Questa forza dipende dall’angolo di torsione del
filo. Come risultato, il pendolo si muove in modo oscillatorio, tornando sempre verso
la sua posizione di equilibrio.

Come nei casi precedenti, I’energia meccanica si conserva e la sua derivata
rispetto al tempo ci fornisce un modo pratico per ricavare la legge oraria per almeno
una delle grandezze dinamiche in gioco. Ricordiamo che il momento torcente in
questo caso vale, in modulo, M(¢) = —k6(t), dove k & la costante di torsione del filo.
Indichiamo la velocita angolare di questo pendolo con Q(t) = 6(¢) e il suo momento
d’inerzia con I, per cui M(t) = Ia(t), dove o & I’accelerazione angolare. Ad un
qualunque istante del moto del pendolo sappiamo che I’energia meccanica totale si

conserva:

1 1
E(t)= 5192 (1)+ Ekez(t) = costante.
——

Cin.rotaz. Pot .elast.

La conservazione dell’energia (E(¢) = 0) si traduce nella seguente equazione:

0 = 21(20006())+ 2k(2000()).

— () +k6(1), :>é(t):—17€9(t),

che puo essere scritta nella forma

6(1) = —026(1), w—\/?

che ¢ la ben nota equazione del moto per il pendolo semplice, ossia I’equazione del
moto armonico semplice. Si noti che la pulsazione ® (frequenza di oscillazione del
pendolo attorno al punto di equilibrio del pendolo) ¢ diversa dalla velocita angolare
Q(#) (velocita con cui il pendolo ruota intorno al suo punto di sospensione).
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Utilita pratica.

La conoscenza dell’equazione del moto per un sistema fisico cosi semplice
permette — dalla misura di alcune grandezze fisiche quali il periodo (T =
27 /w) o il momento di inerzia del sistema — di stimare il valore della costante
di torsione del filo, o la costante di gravitazione universale di Newton.

Problema 7.0.4 Moto di un pendolo fisico

Un pendolo fisico € un sistema costituito da una
massa puntiforme, solitamente un oggetto in metallo, so-
speso da un filo o un’asta rigida. Quando il pendolo vie-
ne sollevato e rilasciato, inizia a oscillare lungo un piano
verticale sotto I’effetto della forza di gravita.

L’energia meccanica si conserva e la sua derivata
rispetto al tempo ci fornisce un modo pratico per ricavare
la legge oraria per almeno una delle grandezze dinami-
che in gioco. Indichiamo la velocita angolare di questo
pendolo con Q(t) = (¢), e con m la sua massa. Ad un
qualunque istante del moto, 1’energia meccanica totale ¢ data da:

2
N——

Cin.rotaz.

1
E(t) = =IQ?(t) +mghcy (1) = costante,
N———

Pot.grav.

dove I ¢ il momento di inerzia del corpo rigido che costituisce il pendolo e
hem(t) = ho + €em (1 — cos 6(r)) indica I'altezza del centro di massa al tempo ¢. La
conservazione dell’energia (E (¢) = 0) si traduce nella seguente equazione:

0 = L6(B(0)-+me (fewsin0(1)0(0).

= B0 Emelenr), = 6() = "8 (),

dove abbiamo sfruttato I’ approssimazione di piccole oscillazioni (sin 0 (¢) ~ 6(¢)) per
poter arrivare alla forma

6(1) = —0?6(1), w:\/@

che ¢ la ben nota equazione del moto armonico semplice. Si noti che la pulsazione
o (frequenza di oscillazione del pendolo attorno al punto di equilibrio del pendolo) &
diversa dalla velocita angolare Q(¢) (velocita con cui il pendolo ruota intorno al suo
punto di sospensione).
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Utilita pratica.

Il periodo di oscillazione di un pendolo fisico pud essere utilizzato per misura-
re la costante di gravitazione universale di Newton, cosi come per determinare
il centro di massa e il momento di inerzia di oggetti complessi.

Problema 7.0.5 La macchina di Atwood

La risoluzione di un problema
che coinvolge una macchina semplice

. Stato iniziale Stato finale
come quella di Atwood, generalmen- (In quiete) (In movimento)

te richiede I’identificazione delle forze N N
agenti sugli elementi del sistema: i due ; ;
blocchi connessi tramite un filo a contat-
to con una carrucola, e la carrucola stes-
sa nel caso in cui questa non sia idea-
le (ma sia, per esempio, un disco omo-
geneo di raggio R e massa U posto ad
una quota /). In mancanza di resistenza
dell’aria, il caso pill comunemente ana-
lizzato, ¢ possibile sfruttare la conserva-
zione dell’energia meccanica tra lo stato
iniziale e lo stato finale del sistema. Nello stato iniziale, I’energia meccanica ¢ tutta
potenziale gravitazionale per i due blocchi e la carrucola, rispettivamente:

Einiziale = m1ghy +maghy + lgh,

dove il contributo cinetico ¢ nullo perche¢ nessun corpo ¢ in moto traslazionale o
rotazionale. Nello stato finale, I’energia meccanica ha sia un contributo di energia
potenziale gravitazionale sia un contributo cinetico, quest’ultimo dovuto al moto dei
due blocchi (si noti che la velocita dei 2 blocchi ¢ la stessa in modulo) e alla rotazione
della carrucola:

1 1 1
Efingle = m1ghy +moghy + ugh+ Eml V2 + 5’"2"2 + Elcarrw2 ,
——

Cin. trasl. blocco 1  Cin. trasl. blocco2  Cin. rotaz. carrucola

con Iy = %[,LR2 ew= 1% in condizioni standard, con filo inestensibile. Da cui segue

%Icarra)2 = % ,uvz. Per la conservazione dell’energia meccanica totale, da Eiyiziale =
Efinale, € ponendo Ah = hy — hy segue:

1
—migAh+mygAh = Evz <m1 +my + %) ,
da cui otteniamo la velocita:

V= 1/2gAh>< M

ml—i-mg—i-%
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Analizziamo questo risultato in casi specifici di interesse fisico. Per esempio, se la
carrucola fosse ideale (i = 0) allora il denominatore sarebbe piu piccolo di quello
nel caso non ideale, e di conseguenza la velocita dei due blocchi sarebbe piu eleva-
ta. Questo risultato ha senso, poiché non viene utilizzata energia per far ruotare la
carrucola, e quindi I’energia corrispondente viene utilizzata per incrementare quella
cinetica. Un altro risultato interessante ¢ che per mp = mj la velocita & nulla: se i bloc-
chi hanno la stessa massa, come ¢ lecito ed intuitivo aspettarsi, non si muoveranno
dal loro stato iniziale: il sistema rimane in equilibrio.

Andiamo dunque a calcolare 1’accelerazione dei due blocchi, considerando la
cinematica del moto verticale:

y(t) =yo+vo(t—1o) + %a(t—to)z,v(t) = vo+a(t—r),

con fo = 0, yo = hi, Y(tfinale) = h2 € vo = 0. Otteniamo il tempo fgpae = v/a dalla
. . . 2 .
seconda equazione e sostituiamo nella prima, ottenendo a = ;. Sostituendo a v?
I’espressione trovata in precedenza, avremo infine:
my —mj

_m1+m2+%ga

che chiaramente corrisponde al risultato ottenuto utilizzando il classico metodo delle
forze. Da notare che per my > my e my > U la velocita si riduce a v ~ /2gAh e,
di conseguenza, a ~ g: equivalente al caso di caduta libera di un corpo (in questo
caso my € cosi pesante da rendere trascurabile 1’influenza di m; e della massa della
carrucola sul moto).

E’ anche interessante notare che se la carrucola ¢ eccessivamente pesante ri-
spetto ai blocchi (1 > my,my) allorav ~ 0 e a ~ 0: sostanzialmente il sistema rimane
in equilibrio perché I’energia potenziale dei due blocchi non ¢ sufficiente a soddisfare
il bisogno di energia per far ruotare la carrucola.

Problema 7.0.6 L’orologio a fotone

Specchi 2
riflettenti l

. —

d

Per un osservatore Per un osservatore
interno al treno esterno al treno
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Un altro esempio classico, utilizzato per illustrare i concetti di tempo e relativita, ¢
dato dall’orologio a fotone (photon clock). In questo esperimento teorico', un segna-
le luminoso — che per semplicita puo essere considerato una particella singola, come
un fotone, che si muove alla velocita della luce — viene riflesso tra due specchi per-
fettamente paralleli posti ad una distanza d nota. Il tempo At che impiega il fotone
per viaggiare da uno specchio all’altro e ritorno pud essere utilizzato per misurare lo
scorrere del tempo, come un vero e proprio orologio. In sostanza, ogni “ticchettio”
corrisponde a mezzo ciclo, quindi due rintocchi definiscono un ciclo completo: 1’o-
rologio misurera il tempo in unita di tale ciclo, in modo del tutto analogo a quello di

un comune orologio a pendolo da salotto.

Supponiamo che questo sistema si trovi a bordo di un treno che si muove a
velocita costante i# = ui rispetto ad un sistema di riferimento fisso (es., la stazione
del treno). Consideriamo un osservatore O’ che si trova in un sistema di riferimento
inerziale solidale con 1’orologio (es., a bordo del treno), ed un osservatore O che si
trova in un sistema di riferimento fisso come la stazione del treno.

Indicando con A¢’ I’intervallo temporale misurato da O’ e con At quello misu-
rato da O, da domanda che ci poniamo ¢: i due osservatori concorderanno nella loro
misura di un ciclo? Chiaramente consideriamo condizioni ideali, e supponiamo il
caso ideale in cui entrambi gli osservatori siano dotati di un sistema di monitoraggio
ad altissima definizione che permette loro di contare, senza errori, il numero di cicli
dell’orologio.

Per I’ osservatore interno al treno, il percorso del fotone ¢ verticale e la distanza
percorsa in un viaggio di andata e ritorno ¢ 2d. Indicando il modulo della velocita
della luce con c, I’intervallo temporale At’ misurato durante un ciclo &:

,_2d
=3

At

Possiamo definire At' come il “tempo proprio” che viene misurato da un qualunque
osservatore solidale con 1’orologio.

Per I’osservatore esterno, che vede il treno muoversi con velocita i, il percorso

del fotone & naturalmente obliquo — non verticale, come per I’ osservatore solidale O’

— e pertanto deve necessariamente essere maggiore di 2d. Poiché lo spostamento

lungo mezzo ciclo sara pari a c%, in generale ci aspettiamo cAr > 2d. Infatti, il

percorso del fotone dipendera dalla velocita i del treno: nel caso limite u = 0, cio¢

quando il treno & in quiete, O misurera lo stesso intervallo temporale, ossia Ar = At'.
Ar

Ma se u > 0, durante I'intervallo di tempo 5 il treno si spostera orizzontalmente

coprendo una distanza pari a u%. Osservando il triangolo rettangolo che si viene a
formare durante mezzo ciclo — tra gli istanti #; e #3 — ¢ possibile utilizzare il teorema

In una versione realistica di questo esperimento bisognerebbe considerare effetti aggiun-
tivi, che in questo caso trascuriamo per dimostrare che il risultato finale non dipende da
questi.
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di Pitagora per trovare la distanza percorsa dal fotone:

2
(c%) = d* + (uAr)*.

Semplificando e risolvendo per At, otteniamo:

2d 1 A

2_ 2 :

cz—u c \/ 1— ,:_j \/ 1— Z_;

Poiché la velocita del treno sara sempre minore di quella della luce, il denominatore
¢ una quantith minore di 1: di conseguenza, At > Ar’, ossia il tempo misurato dal-
I’osservatore esterno ¢ “dilatato” rispetto al tempo proprio misurato dall’osservatore
in movimento con il treno. Questo effetto, noto come dilatazione temporale, sta alla
base della teoria della relativita ristretta sviluppata da Einstein. I due osservatori sa-
ranno sempre in disaccordo sulla quantita di tempo misurata, tranne nel caso u = 0,
cioe quanto il treno ¢ in quiete ed entrambi sono in sistemi di riferimento solidali con
I’orologio. La dilatazione temporale ¢ uno dei concetti piu intriganti della teoria della
relativita.

Utilita pratica.

Il paradosso dei gemelli

At=2

Il paradosso dei gemelli ¢ un esperimento mentale in relativita ristretta
che descrive una situazione in cui un gemello viaggia nello spazio intergalat-
tico a una velocita prossima a quella della luce, mentre 1’altro rimane sulla
Terra. Al suo a casa, il gemello viaggiatore scopre di essere piu giovane del
gemello rimasto sulla Terra, proprio a causa della dilatazione temporale. Que-
sto paradosso non ¢ solo una curiosita teorica: ¢ stato confermato attraverso
esperimenti con orologi atomici molto precisi su aerei e satelliti che hanno
mostrato minime differenze di tempo a causa delle loro velocita rispetto alla
superficie terrestre.

Un esperimento per testare questo apparente paradoss fu condotto per la
prima volta da Joseph Hafele e Richard Keating nel 1971¢. I due scienziati
utilizzarono quattro orologi atomici molto precisi, basati sulle frequenze di
vibrazione degli atomi di cesio. Gli orologi furono inizialmente sincroniz-
zati con degli orologi a terra, ospitati presso lo United States Naval Obser-
vatory, e successivamente furono installati a bordo di un aereo di linea che
circumnavigo la Terra.

I risultati dell’esperimento confermarono la previsione relativistica: gli
orologi atomici che avevano viaggiato mostravano una piccola, seppur ap-
prezzabile di qualche us, differenza di tempo rispetto a quelli rimasti a terra.
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Questa discrepanza non poteva essere spiegata da nessun’altra teoria fisica
nota all’epoca, fornendo una solida conferma sperimentale della dilatazione
temporale con orologi macroscopici.

Di fatto, I’esperimento ha importanti implicazioni pratiche, in particolare
per il funzionamento dei sistemi di navigazione satellitare come il GPS, che
devono tenere conto delle differenze relativistiche nel tempo misurato dai sa-
telliti in orbita rispetto agli orologi sulla superficie terrestre per mantenere la
precisione necessaria.

%https://www.science.org/doi/10.1126/science.177.4044.166

J

Curiosita.

I raggi cosmici

I raggi cosmici sono particelle ad alta energia provenienti dallo spazio
esterno, che quando interagiscono con 1’atmosfera terrestre producono nuove
particelle, tra cui i muoni. I muoni hanno una vita media molto breve, circa
2.2 us: per questo motivo, non dovrebbero essere in grado di raggiungere la
superficie terrestre prima di decadere in elettroni (o positroni) e neutrini. Tut-
tavia, poiché viaggiano a velocita prossime a quella della luce, il loro tempo
proprio ¢ soggetto al fenomeno della dilatazione temporale: pertanto la lo-
ro vita media misurata da un osservatore in quiete sulla Terra si dilata e gli
permette di essere rilevati a terra.

Problema 7.0.7 L’atomo di Bohr

Si consideri un atomo di idrogeno come costituito da un nucleo (protone) di
carica +e e da un elettrone di carica —e che ruota attorno al nucleo lungo un’orbita
circolare di raggio r. Si assuma che il momento angolare dell’elettrone sia quantiz-
zato” secondo il principio di Bohr, ciog che si possa scrivere L = nh, dove n & un
numero intero positivo. Cominciamo calcolando la velocita v dell’elettrone in orbi-
ta e determinando I’espressione per il raggio r, dell’orbita in funzione del numero
quantico n.

Lelettrone, di massa m, si muove lungo un’orbita circolare attorno al nucleo
a causa dell’attrazione elettrostatica tra la carica —e dell’elettrone e la carica +e del

2Lo studente non necessita di nozioni di meccanica quantistica in questo caso: basta imma-
ginare che il momento angolare in questione puo assumere solo valori specifici, multipli di una
quantita costante fondamentale nota come /.
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protone. Questa forza & descritta, in modulo, dalla legge di Coulomb:

1 ¢
= me 7D

dove r ¢ il raggio dell’orbita e & ¢ la costante dielettrica del vuoto. Questa forza

fornisce la necessaria forza centripeta per mantenere ’elettrone in orbita, per cui
abbiamo:

sz

Fenr = T (7-2)

Uguagliando la forza centripeta alla forza di Coulomb, otteniamo

2 2

my 1 e
= 7.3
r 4meg r?’ (7.3)

da cui isoliamo la velocita:
1 &2
2

= — . 7.4
Y drey mr (7.4)

Secondo I’ipotesi di Bohr, il momento angolare L dell’elettrone ¢ quantizzato, per cui
vale la relazione

L = mvr=nh, (7.5)
da cui possiamo esprimere la velocitd come

y = M (7.6)

mr

Sostituendo 1’espressione di v nell’equazione derivata dall’uguaglianza delle forze,

otteniamo
n\? 1 e
(”—) - 1.7)
mr drey mr

da cui, risolvendo rispetto ad r, ed indicando esplicitamente la dipendenza dal numero
quantico n, otteniamo:

Ameyh?
r, = 2EER o (7.8)

m€2

Questo ¢ il raggio quantizzato dell’orbita dell’elettrone per un numero quantico prin-
cipale n. Il raggio piu piccolo, per n = 1, € noto come raggio di Bohr ay:

Amegh?
ao = 5 =
me
. 1012 . 10-347. )2
_ 47-8.85-107"“F/m (1.05 1072%] s) ~53.10" m. (7.9)
9.11-10*31kg-(1.6~10*19C)2
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Questo risultato, ottenuto a partire da principi basici della meccanica classica € in otti-
mo accordo con il risultato dei calcoli ben pil sofisticati della meccanica quantistica.
L’energia cinetica dell’elettrone in orbita ¢ data da K = %mvz, per cui utilizzando il
risultato precedente per v> otteniamo:

&2

K, = , 7.10
8megr, ( )

mentre 1’energia potenziale elettrostatica tra il nucleo e I’elettrone ¢ data da

1 &
v, = ———. 7.11
" 4rey ry ( )

L’energia totale E, dell’elettrone ¢ ottenuta dalla somma dell’energia cinetica e del-
I’energia potenziale, per cui abbiamo:

62 €2 €2 me4

1
E, = K, +U,= — = — = — C— 7.12
" nUn Smegr, Ameor, 87eyr, 8en* n? (7-12)

Si noti come ’energia totale E, dell’elettrone risulta negativa. Questo risultato ha
un significato fisico molto importante: indica che ’elettrone si trova in uno stato le-
gato al nucleo. Un’energia negativa implica che, per liberare I’elettrone dal nucleo
(ciog per ionizzare 1’atomo), & necessario fornire energia pari al valore assoluto del-
I’energia totale |E,|. Sinoti che U, = —2K, in questa circostanza: un risultato che si
ripresenta in tutti i sistemi dove la forza di legame ¢ centrale e mostra una dipendenza
ditipo 1/ rZ, un risultato noto come il reorema del viriale. In tal caso, I’energia totale
¢ sempre pari a meta dell’energia potenziale. Sebbene il modello di Bohr sia un mo-
dello molto semplificato e non accurato, secondo la moderna meccanica quantistica,
¢ notevole come riesca a fornire una buona approssimazione per sistemi semplici co-
me 1’atomo di idrogeno. Si noti che, tuttavia, non descrive correttamente atomi pit
complessi o gli effetti di natura non classica, che richiedono quindi un trattamento
della meccanica quantistica pit completo.

Problema 7.0.8 I1 buco nero classico

Consideriamo un pianeta di massa M e raggio R, che per semplicita assumia-
mo essere una sfera perfettamente omogenea assolutamente in quiete. Un oggetto di
massa m ¢ posizionato sulla superficie di questo pianeta e ci chiediamo quale sia la
velocita di fuga vyg, per m. Inoltre, assumendo che il pianeta sia adesso in rotazione
con velocita angolare €, calcoleremo come cambia la velocita di fuga.

Da una parte, si tratta di un problema classico di teoria gravitazionale. Dal-
I’altra, ci fornisce una base per chiederci quale raggio R* dovrebbe avere il pianeta
per impedire la fuga anche di un fotone, assumendo vge, = ¢, dove ¢ € la velocita
della luce. Questa semplice richiesta si allinea con una delle proprieta di un oggetto
astrofisico molto speciale: il buco nero. Infatti, ¢ possibile ottenere alcune proprieta
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