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Chiari nell’esposizione, esaurienti nei contenuti, gradevoli nella gra-
fica, 1 Memorix si propongono di agevolare — come il nome stesso sug-
gerisce — il processo di memorizzazione, stimolando nel lettore sia I’at-
tenzione visiva sia la capacita di associazione tra concetti, cosi da “trat-
tenerli” piu a lungo nella mente. Schemi, uso frequente di elencazioni e
neretti, parole-chiave, curiosita, brevi raccordi interdisciplinari, test di
verifica a fine capitolo: ecco le principali caratteristiche di questi tasca-

bili.

Utili per apprendere rapidamente i concetti base di una disciplina o
per ricapitolarne gli argomenti principali, 1 libri della collana Memorix
si rivolgono agli studenti della scuola superiore, a chi ha gia intrapreso
gli studi universitari, a quanti si accingono ad affrontare un concorso.
Ma anche a tutti coloro che vogliono riappropriarsi di conoscenze che
la mancanza di esercizio ha affievolito o semplicemente vogliono farsi
un’idea su materie che non hanno fatto parte della propria esperienza
scolastica o, ancora, vogliono avere a portata di mano uno strumento da
consultare velocemente all’occorrenza.
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Nella prima parte del volume vengono proposti tutti i concetti di base
della goniometria a cui segue lo studio delle equazioni e disequazioni
goniometriche e il problema della determinazione di tutte le grandezze
caratteristiche di un qualsiasi tipo di triangolo.

Nella seconda parte viene introdotto il concetto di logaritmo e viene
affrontata la risoluzione delle equazioni e disequazioni logaritmiche ed
esponenziali.

L’ultima parte tratta le progressioni aritmetiche e geometriche, sia da un
punto di vista teorico che nelle loro applicazioni pratiche.

Gli argomenti sono esposti secondo una sequenza logica e una graduali-
ta che ne rende facilmente comprensibili tutti gli aspetti sia pratici sia teo-
ricl.

La trattazione formale e simbolica ¢ sempre affiancata da parti discorsive
che tendono a presentare in modo intuitivo i concetti teorici. Particolare
enfasi ¢ posta sulla risoluzione degli esercizi e sull’applicazione dei concetti
formalizzati.
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| punti-chiave

> (Conoscere le caratteristiche della funzione esponenziale e di quella loga-
ritmica.

> Conoscere le proprieta fondamentali dei logaritmi.

> Saper utilizzare le proprieta dei logaritmi per semplificare espressioni
algebriche.

> Saper operare un cambiamento di base logaritmica.

8.1. La funzione esponenziale

Indicato con R l'insieme dei numeri reali e con R* I'insieme dei
numeri reali positivi, si puo considerare un qualsiasi 2 € R” e definire la
funzione esponenziale di base a:

fixo—a"

Questa funzione compie I'operazione di associare ad un numero rea-
le x il numero reale positivo #*.

Se la base ¢ pari al numero di Nepero e (pari a circa 2,71828), allora
la f'¢ detta semplicemente funzione esponenziale.

fix—e"

La funzione esponenziale ¢ definita in tutto I'insieme R, ossia puo
associare un valore a qualsiasi numero reale x. Si dice in tal caso che il
dominio o il campo di esistenza della funzione esponenziale ¢ I'insie-
me R.

I numeri associati dalla funzione esponenziale ai valori x spaziano su
tutto I'insieme dei numeri reali positivi R*. Pertanto si dice che il codo-
minio o I'immagine della funzione esponenziale ¢ I'insieme R".

Se la base # > 1 la funzione esponenziale si comporta in modo da
associare a due valori x, ed x,, tali che x, < x,, due valori corrispondenti
a™ e a” tali che 4™ < a™. In questo caso si dice che la funzione esponen-
ziale & strettamente crescente in R. Quindi si ha:
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Equazione 8-1 a>lewx <x,=a" <a”

Se la base 0 < # < 1 la funzione esponenziale si comporta in modo da
associare a due valori x, ed x,, tali che x, < x,, due valori corrispondenti
a™ e a* tali che 4™ > 4™. In questo caso si dice che la funzione esponen-
ziale & strettamente decrescente in R. Quindi si ha:

Equazione 8-2 O<a<le x; <X, =a" >a"

Si noti invece che se # = 1 la funzione esponenziale si riduce alla fun-
zione costante pari ad 1.

In Figura 8-1 sono mostrate le funzioni esponenziali per 2 > 1 ed
0 <2 < 1 in un sistema di riferimento cartesiano.

a>1 / \ 0<a<l
1 1

—/ \

Figura 8-1
La funzione esponenziale di base a > 1 (a sinistra)
e di base 0 <a < 1 (a destra)

8.2. Definizione di logaritmo e proprieta fondamentali

Si consideri la seguente relazione che lega due numeri reali # e 4,
attraverso un esponente x.

a*=b
In pratica x ¢ esponente che occorre dare alla base # per ottenere il
valore b. Il valore x ¢ pertanto detto logaritmo di / in base # e si indica
con la seguente notazione:

x=log b

Si fornisce quindi la seguente definizione di logaritmo. Dati due
numeri # e b positivi, con 2 # 1, si chiama logaritmo del numero & in
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base # ’esponente a cui si deve elevare la base # per ottenere il valo-
re b.
Il valore 4 € anche detto argomento del logaritmo.

Si presentano ora alcune proprieta fondamentali dei logaritmi.

DIl _ log 50 a>1 O<a<l
t
ogarl mo Ogﬂ > U se b>1 oppure O<17<1

IT) log,2=1 perché a =a
IV) log,1=0 perché 2’ =1

V) Siccome la relazione x =log b ¢ equivalente alla relazione 4" =,
allora deve necessariamente essere # > 0, infatti nel paragrafo preceden-
te la funzione esponenziale ¢ stata definita per basi positive; inoltre deve

essere necessariamente # # 1, perché la base 1, elevata a qualsiasi espo-

nente, assume valore 1, ossia 1 =1 e quindi in tal caso ci si ridurrebbe
alla funzione costante. Infine 4 > 0 perché nel paragrafo precedente si ¢
visto che I'immagine della funzione esponenziale ¢ I'insieme dei numeri
reali positivi.

8.3. La funzione logaritmica

La funzione logaritmica in base # associa ad un qualsiasi valore x rea-
le e positivo il corrispondente valore reale log_ x.

fix——>log, «

La funzione logaritmica ¢ definita in tutto l'insieme R, ossia puo
associare un valore a qualsiasi numero reale positivo x. Si dice in tal
caso che il dominio o il campo di esistenza della funzione logaritmica
¢ I'insieme R*.

I numeri associati dalla funzione logaritmica ai valori x spaziano su
tutto I'insieme dei numeri reali R. Pertanto si dice che il codominio o
I'immagine della funzione logaritmica ¢ I'insieme R.
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Se la base 2 > 1 la funzione logaritmica si comporta in modo da asso-
ciare a due valori «, ed «,, tali che x; < x,, due valori corrispondenti
logx, e logx, tali che log, x;, <log, x,. In questo caso si dice che la fun-
zione logaritmica ¢ strettamente crescente in R. Quindi si ha:

Equazione 8-3 a>1e x <x,=log x <log, x,

Se la base 0 < # < 1 la funzione logaritmica si comporta in modo da
associare a due valori x, ed x,, tali che x, < «,, due valori corrispondenti
logx, e logx, tali che log, x, >log, x,. In questo caso si dice che la fun-
zione logaritmica ¢ strettamente decrescente in R. Quindi si ha:

Equazione 8-4 O<a<le x <x,=log, x >log x,

a>1 0<a<l
1_— \1
[ —

Figura 8-2
La funzione logaritmica di base a > 1 (a sinistra)
e di base 0 < a < 1 (a destra)

In Figura 8-2 sono mostrate le funzioni logaritmiche per 2 > 1 ed
0 <2 < 1 in un sistema di riferimento cartesiano. Da tale figura si nota
che quando # > 1 il logaritmo assume un valore positivo se il suo argo-
mento ¢ maggiore di 1, viceversa assume valore negativo. Inoltre il
valore del logaritmo ¢ maggiore di 1 se I’argomento del logaritmo ¢
maggiore della base. Se invece 0 < # < 1 allora il logaritmo ¢ positivo
quando il suo argomento ¢ compreso tra 0 ed 1, viceversa il logaritmo ¢
negativo. Inoltre il valore del logaritmo ¢ maggiore di 1 se ’'argomento
del logaritmo ¢ minore della base.

In base a tali considerazioni si puo affermare, ad esempio, che:
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log,,3 >0 poiché la base 10 ¢ maggiore di 1 e ’argomento 3 ¢ mag-

giore di 1; inoltre log,,3 <1 poiché I'argomento 3 ¢ minore della base
10.

log,4 >0 poiché la base 10 ¢ maggiore di 1 e ’argomento 4 ¢ mag-
giore di 1; inoltre log,4 > 1 poiché I’argomento 4 ¢ maggiore della base

3.
log, 3 <0 poiché la base % ¢ minore di 1 e "argomento 3 ¢ maggio-
re di I
log, % >0 poiché la base % ¢ minore di 1 e argomento % ¢ minore di
2

1
1; inoltre log, 3 > 1 poiché ’argomento % ¢ minore della base %
2

8.4. Teoremi fondamentali dei logaritmi

Teorema del prodotto

Il logaritmo di un prodotto di due (o pit) numeri ¢ pari alla somma
dei logaritmi di ciascun numero.

Equazione 8-5 log,(a- b)=log,a+log b
DIM
Si dimostra il teorema per il prodotto di due fattori.
Si pongono:
x =log,a
y=log b

da cui si ottengono le due seguenti relazioni:
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Moltiplicando membro a membro le due equazioni si ottiene:

X

-l =a-b
V=g b

Per la definizione di logaritmo, I'ultima equazione equivale a:
x+y=log. (a- b)
Specificando i valori di x e y si ottiene la tesi:
log.a+log.b=log (a- b)

Il teorema puo essere facilmente esteso al caso di un prodotto di piu
di due fattori.

Equazione 8-6 log,(a- b- ¢ ..)=log,a+log,b+log,c+..

Teorema del rapporto
Il logaritmo di un rapporto di due numeri ¢ pari alla differenza dei
logaritmi di ciascun numero.

Equazione 8-7 logc (%j = logc a— 1ng b
DIM
Si pongono:
x =log. a
y=log.b

da cui si ottengono le due seguenti relazioni:

c“'=a
¢’ =b

Dividendo membro a membro le due equazioni si ottiene:
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<t a

¢ b

c’”_yzﬁ
b

Per la definizione di logaritmo, I'ultima equazione equivale a:

a
x—y=10gc£;)

Specificando i valori di «x e y si ottiene la tesi:
log.a—log b =log, (%)

Teorema della potenza

Il logaritmo di una potenza di un numero ¢ pari al prodotto del-
’esponente per la base del logaritmo del numero.

Equazione 8-8 logc (ﬂb) =b- logc a
DIM
Si pone:
x=log. a

da cui si ottiene la seguente relazione:
" =a
Elevando a # entrambi i membri:
b
() =
Clz- x ﬂb
Per la definizione di logaritmo, I’equazione equivale a:
b- x=log[(db)

Specificando il valore di x si ottiene la tesi:

b- log.a=log. (&/’)
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Teorema della radice

Il logaritmo di un radicale ¢ pari al quoziente fra il logaritmo del
radicando e I'indice del radicale.

Equazione 8-9 logc % — l g log 4a
n

DIM
Applicando il teorema della potenza si ottiene la tesi:

1
log, %/a = logC[ﬂ”j: 1 log.a
n

Esempi. 1) Determinare il valore dei seguenti logaritmi, attraverso i
teoremi fondamentali.

1) log,64. Si scompone il 64 in potenza di 2 log,64 = log,2°. Appli-
cando ’Equazione 8-8 si ottiene: log,2° = 6 - log,2. Siccome log, 4 = 1,
allora: 6 - log,2 = 6. Quindi log,64 = 6.

2) log% =log,3"' =1 log,3=-1

3
3) log, 27 =log, 3= log, (%j =-3- log, (%) =-3

3 3 3

2
4) log7§/772 =log, 7} :; log. 7 :§
2) Nei seguenti esempi non ¢ specificata la base comune a tutti 1 loga-
ritmi, in quanto ininfluente per il risultato algebrico finale.
1) Semplificare la seguente espressione mediante i teoremi fonda-
mentali dei logaritmi 2logx +3log y —logz .
Applicando I'inversa del’Equazione 8-8 si ottiene:

log x” +log y’ —log 2

Applicando I'inversa del’Equazione 8-5 si ottiene:
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log(x2 : yz) —logz

Applicando I'inversa del’Equazione 8-7 si ottiene:

23
log[x J )
Z

2) Semplificare la seguente espressione mediante le proprieta dei

logaritmi. | ,
3{2(10{;@ - glogbj - glogc}

Applicando 'inversa dell’Equazione 8-9 si ottiene:

1 2
3{2[10gﬂ — loglﬂj — logcﬂ = 3[2(loga —log%) - logi/:z}

Di seguito si applicano le altre proprieta dei logaritmi.

3[ 2(1oga~log s) - loge” | = [(log\f] logf}

=3 m(%)z—bgd?] log—— J— ~log/c } {Mg#}:

2 6 6
a a

2
loo—2 | =1oo| =2 | =100—2 — oo -2
e } * (W o (Wf e

=3

3) Semplificare la seguente espressione mediante le proprieta dei

logaritmi.
[JZ Iy ]
log 3
¢

Applicando ’Equazione 8-7 si ottiene:

log(\/;i/biz) —log¢’
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Applicando ’Equazione 8-5 si ottiene:

log\/;+logi/b72 —log¢’
Applicando ’Equazione 8-8 e I’Equazione 8-9 si ottiene:

1 2

loga? +logh® —logc® = %logd+§logb —3loge

4) Semplificare la seguente espressione mediante le proprieta dei

3x5-\/?

2
Z

Applicando le proprieta dei logaritmi si ottiene:

2

logaritmi log

:%[logx5+log\/?—10gzz}=%[510gx+%10g)’_210gz -

—Elo x+llo —zlo P

8.5. Sistemi di logaritmi e cambiamento di base

Sistemi di logaritmi

L’insieme dei logaritmi di tutti i numeri positivi rispetto a una data
base # ¢ detto sistema di logaritmi in base 4.

Quando la base # = 10, si ottiene il sistema dei logaritmi decimali.

Quando la base ¢ rappresentata dal numero di Nepero, ossia 2 = ¢,
allora si ottiene il sistema dei logaritmi naturali o neperiani.

In generale si fa riferimento a questi due sistemi di logaritmi piutto-
sto che a sistemi in un’altra base. Pertanto quando in questo volume si
omette la base del logaritmo si intende un logaritmo decimale.

log,, 2 =loga

Si noti in particolare che la parte intera del logaritmo di un numero
in base 10, aumentata di una unita, ¢ pari al numero di cifre che costi-
tuiscono quel numero. Infatti sia # un numero costituito da 7 cifre. Si



Sistemi di logaritmi e cambiamento di base 235

ha che: 7 =1+ log,, |, dove con le parentesi quadre [] si vuole indica-
re la parte intera del logaritmo.

Si noti che tale ragionamento vale per qualsiasi sistema di numera-
zione. Ad esempio la parte intera del logaritmo in base 2 di un numero,
aumentata di una unita, ¢ pari al numero di cifre mediante il quale si
rappresenta quel numero nel sistema di numerazione in base 2, ossia il
sistema binario.

Esempio. Il numero 1423 ¢ costituito da 4 cifre. Il logaritmo di tale
numero in base 10 vale log , 1423 = 3,15...; pertanto la parte intera vale
log,,1423] = 3. Quindi: n =1+[log, a | = 4 =1+3.

In altri testi il logaritmo in base e puo essere indicato anche con
’espressione Ina, con cui si intende il “logaritmo neperiano”.

log,a=Ina

In generale le calcolatrici scientifiche sono dotate di apposite funzio-
nalita per calcoalre i logaritmi in base 10 oppure in base e.

Teorema del cambiamento di base

Il logaritmo di un numero positivo b, rispetto ad una base #, ¢ dato
dal rapporto dei logaritmi di 4 e di # rispetto ad un’altra base c.

Equazione 8-10 log b= log, &
log.a

DIM

Si pone: x = log, b, da cui si ottiene la seguente relazione: #° = b. Si
calcola ora il logaritmo in base ¢ di ambo i membri: log 4* = log 4. Dal-
I’Equazione 8-8 si ottiene:

x- log a=log. b
e log b

~log. a

Specificando il valore di x si ottiene la tesi:
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La proprieta del cambiamento di base puo essere utile per calcolare
un logaritmo quando la sua base ¢ diversa da 10 e dal numero di nepe-
ro e. Difatti si puo trasportare un logaritmo da una base qualsiasi alla
base 10 oppure e ed utilizzare una calcolatrice scientifica per determi-
nare il valore dei logaritmi in queste basi.




| logaritmi — Test di verifica 237

I Test di verifica

Quesiti a risposta multipla

1) Se a > 0 allora z log a =

b f—
a) loga’ ) 4 =¢
b) log 4’ d) a4 =b
c) log2a
d) 1 5) log,,,0,0001 =
a) +4
2) 1l logaritmo di un numero 2 | )
positivo in base 5 € un numero b | o)
tale che: d) -4
a) P =a
by #=b 6) Quanto vale log,v27" ?
C) 101’ =5 a) -8
b
d) 5"=a b) 4
8
3)Se a>b >0, allora: 3)) 4
| b
a) log,| —J<0 7) La quantita log, 0,1 &
) a) maggiore di 1
b) log,|—|>1 b) compresa tra Qe 1
a ¢) minore di0
b d) pariadl
c) O<log, —) <1
“ 8)) 110g4+log4=
b a) log16
d) log, (; =1 b) log8
c) log4
d) log1/4
4) Se log a = b, allora:
) ¢ =b 9) Quale dei seguenti logaritmi dif-
b ferisce dagli altri?
b) ¢ =a a) log, 8
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b) log, 125
c) log,a’
d) log, 81

10) Per 2 > 0, log 2" =
a) n- loga

b) log(n- )
c) n+loga

d) 3/loga

11) Il logaritmo decimale di un
numero ¢ negativo:

a) quando il suo argomento ¢ negati-
VO

b) quando il suo argomento ¢ mino-
re di 10

¢) quando il suo argomento ¢ mino-
redil

d) quando il suo argomento ¢ mag-
giore di 10

12) Se a, b > 0, allora log(g) —

a) loga+logh
b) loga—logh

c)
log b

)]

log a

13) log,32 =
a) 64
b) 16

9 32

d) s

14) log10’ + log10’ =
a) logl0°
b) logl0’

2
c) logl0’
d) logl0™

15) Il log,, 99,9 e:

a) compresotraQel

b) compreso trale 2

c) compreso trale 10
d) compreso tra 10 e 100

| -

16) log .5
a) -1/5
b) 1

c) 5

d) 1/5

17) II numero decimale 64 da
quante cifre € composto in base
binaria (base 2)?

a) 5

b) 6

c) 7

d) 8
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18) log, 6 + log,3 =
a) log, 18
b) log, 9

Esercizi

Attraverso i teoremi sui logaritmi
ridurre le seguenti espressioni in
un unico logaritmo.

1) log3+2log3 —log27
1
2) 210gx—§(logy—210gz)
1
3) —3[logﬂ—E(logb+3logc)}+logﬂ

4) 2log a+ 2log(a —b) -
—log(a’ —b*)—log a

c) log,3
d) log, 2

Attraverso i teoremi sui logaritmi

sviluppare i seguenti logaritmi.

2
a

b e
C3

a- b
/5513

a—a
a+1+2a

5) log

6) log

7) log

8) log
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I Soluzioni

Quesiti a risposta multipla

1=a 7=c 13 = ¢
2 =d 8 =a 14 =D
3 =a 9=4d 15=0Db
4 =D 10 = a 16 = a
5=0Db 11 =¢ 17 = ¢
6=4d 12 =D 18 = a
Esercizi
1= [1]
2 _1 oz

Wy

| N0
3 = |log—;

a

| ata-b)
4 = _log (a+b)}

I 1
5 = | 2loga —2logh - Elogc}

1 1
6 = |3logc —E(Zlogd+glogbj]

7 = %(10{3‘561 - 3logb)}

8 = [log(ﬂ —1)+loga —2log(a + 1)]
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