




4Matematica

memorix

Matematica 4
Goniometria, trigonometria, logaritmi,

esponenziali e progressioni



Memorix
Copyright © 2015, 2010 EdiSES S.r.l. – Napoli  

9  8  7  6  5  4  3  2  1  0
2019 2018 2017 2016 2015

Le cifre sulla destra indicano il numero e l’anno dell’ultima ristampa effettuata

A norma di legge è vietata la riproduzione, 
anche parziale, del presente volume o di parte 
di esso con qualsiasi mezzo.

L’Editore

Fotocomposizione:
EdiSES – Napoli

Progetto grafico:
ProMedia Studio di A. Leano – Napoli

Grafica di copertina:
Etacom – Napoli

Stampato presso:
Pittogramma S.r.l. – Napoli

Per conto della
EdiSES – Piazza Dante, 89 – Napoli

www.edises.it        info@edises.it

ISBN 978 88 6584 555 4

Fotoincisione:
R.ES. Centro Prestampa S.n.c. – Napoli

mailto:info@edises.it
http://www.edises.it/


Memorix

Chiari nell’esposizione, esaurienti nei contenuti, gradevoli nella gra-
fica, i Memorix si propongono di agevolare – come il nome stesso sug-
gerisce – il processo di memorizzazione, stimolando nel lettore sia l’at-
tenzione visiva sia la capacità di associazione tra concetti, così da “trat-
tenerli” più a lungo nella mente. Schemi, uso frequente di elencazioni e
neretti, parole-chiave, curiosità, brevi raccordi interdisciplinari, test di
verifica a fine capitolo: ecco le principali caratteristiche di questi tasca-
bili.

Utili per apprendere rapidamente i concetti base di una disciplina o
per ricapitolarne gli argomenti principali, i libri della collana Memorix
si rivolgono agli studenti della scuola superiore, a chi ha già intrapreso
gli studi universitari, a quanti si accingono ad affrontare un concorso.
Ma anche a tutti coloro che vogliono riappropriarsi di conoscenze che
la mancanza di esercizio ha affievolito o semplicemente vogliono farsi
un’idea su materie che non hanno fatto parte della propria esperienza
scolastica o, ancora, vogliono avere a portata di mano uno strumento da
consultare velocemente all’occorrenza.



Matematica 4

Nella prima parte del volume vengono proposti tutti i concetti di base
della goniometria a cui segue lo studio delle equazioni e disequazioni
goniometriche e il problema della determinazione di tutte le grandezze
caratteristiche di un qualsiasi tipo di triangolo.

Nella seconda parte viene introdotto il concetto di logaritmo e viene
affrontata la risoluzione delle equazioni e disequazioni logaritmiche ed
esponenziali.

L’ultima parte tratta le progressioni aritmetiche e geometriche, sia da un
punto di vista teorico che nelle loro applicazioni pratiche.

Gli argomenti sono esposti secondo una sequenza logica e una graduali-
tà che ne rende facilmente comprensibili tutti gli aspetti sia pratici sia teo-
rici.

La trattazione formale e simbolica è sempre affiancata da parti discorsive
che tendono a presentare in modo intuitivo i concetti teorici. Particolare
enfasi è posta sulla risoluzione degli esercizi e sull’applicazione dei concetti
formalizzati.
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8. I logaritmi

I punti-chiave

➢ Conoscere le caratteristiche della funzione esponenziale e di quella loga-

ritmica.

➢ Conoscere le proprietà fondamentali dei logaritmi.

➢ Saper utilizzare le proprietà dei logaritmi per semplificare espressioni

algebriche.

➢ Saper operare un cambiamento di base logaritmica.

8.1. La funzione esponenziale

Indicato con R l’insieme dei numeri reali e con R+ l’insieme dei
numeri reali positivi, si può considerare un qualsiasi e definire la
funzione esponenziale di base a:

Questa funzione compie l’operazione di associare ad un numero rea-
le x il numero reale positivo ax.

Se la base è pari al numero di Nepero e (pari a circa 2,71828), allora
la f è detta semplicemente funzione esponenziale.

La funzione esponenziale è definita in tutto l’insieme R, ossia può
associare un valore a qualsiasi numero reale x. Si dice in tal caso che il
dominio o il campo di esistenza della funzione esponenziale è l’insie-
me R.

I numeri associati dalla funzione esponenziale ai valori x spaziano su
tutto l’insieme dei numeri reali positivi R+. Pertanto si dice che il codo-
minio o l’immagine della funzione esponenziale è l’insieme R+.

Se la base a > 1 la funzione esponenziale si comporta in modo da
associare a due valori x1 ed x2, tali che x1 < x2, due valori corrispondenti

e tali che . In questo caso si dice che la funzione esponen-
ziale è strettamente crescente in R. Quindi si ha:

  a ax x1 2<  a
x2

  a
x1

  
f x ex: →

  
f x ax: →

 a R∈ +



Se la base 0 < a < 1 la funzione esponenziale si comporta in modo da
associare a due valori x1 ed x2, tali che x1 < x2, due valori corrispondenti

e tali che . In questo caso si dice che la funzione esponen-
ziale è strettamente decrescente in R. Quindi si ha:

Si noti invece che se a = 1 la funzione esponenziale si riduce alla fun-
zione costante pari ad 1.

In Figura 8-1 sono mostrate le funzioni esponenziali per a > 1 ed
0 < a < 1 in un sistema di riferimento cartesiano.

8.2. Definizione di logaritmo e proprietà fondamentali

Si consideri la seguente relazione che lega due numeri reali a e b,
attraverso un esponente x.

In pratica x è l’esponente che occorre dare alla base a per ottenere il
valore b. Il valore x è pertanto detto logaritmo di b in base a e si indica
con la seguente notazione:

Si fornisce quindi la seguente definizione di logaritmo. Dati due
numeri a e b positivi, con , si chiama logaritmo del numero b in  a ≠ 1

  
x ba= log

a bx =

a>1 0<a<1

1 1

  
0 1 1 2

1 2< < < ⇒ >a x x a ax xeEquazione 8-2

  a ax x1 2>  a
x2

  a
x1

  
a x x a ax x> < ⇒ <1 1 2

1 2eEquazione 8-1
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Figura 8-1

La funzione esponenziale di base a > 1 (a sinistra)

e di base 0 < a < 1 (a destra)



base a l’esponente a cui si deve elevare la base a per ottenere il valo-
re b.

Il valore b è anche detto argomento del logaritmo.

Si presentano ora alcune proprietà fondamentali dei logaritmi.

I) Il logaritmo 

II) Il logaritmo 

III) perché 

IV) perché 

V) Siccome la relazione è equivalente alla relazione ,
allora deve necessariamente essere a > 0, infatti nel paragrafo preceden-
te la funzione esponenziale è stata definita per basi positive; inoltre deve

essere necessariamente , perché la base 1, elevata a qualsiasi espo-

nente, assume valore 1, ossia e quindi in tal caso ci si ridurrebbe
alla funzione costante. Infine b > 0 perché nel paragrafo precedente si è
visto che l’immagine della funzione esponenziale è l’insieme dei numeri
reali positivi.

8.3. La funzione logaritmica

La funzione logaritmica in base a associa ad un qualsiasi valore x rea-
le e positivo il corrispondente valore reale .

La funzione logaritmica è definita in tutto l’insieme R+, ossia può
associare un valore a qualsiasi numero reale positivo x. Si dice in tal
caso che il dominio o il campo di esistenza della funzione logaritmica
è l’insieme R+.

I numeri associati dalla funzione logaritmica ai valori x spaziano su
tutto l’insieme dei numeri reali R. Pertanto si dice che il codominio o
l’immagine della funzione logaritmica è l’insieme R.

  
f x xa: log→

  
loga x

  1 1x =
  a ≠ 1

a bx =
  
x ba= log

  a
0 1=

  
loga 1 0=

  a a1 =
  
loga a = 1

  

loga b
a

b

a

b
<

>
< <





< <
>





0
1

0 1

0 1

1
se oppure

  

loga b
a

b

a

b
>

>
>





< <
< <





0
1

1

0 1

0 1
se oppure
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Se la base a > 1 la funzione logaritmica si comporta in modo da asso-
ciare a due valori x1 ed x2, tali che x1 < x2, due valori corrispondenti

e tali che . In questo caso si dice che la fun-
zione logaritmica è strettamente crescente in R. Quindi si ha:

Se la base 0 < a < 1 la funzione logaritmica si comporta in modo da
associare a due valori x1 ed x2, tali che x1 < x2, due valori corrispondenti

e tali che . In questo caso si dice che la fun-
zione logaritmica è strettamente decrescente in R. Quindi si ha:

In Figura 8-2 sono mostrate le funzioni logaritmiche per a > 1 ed
0 < a < 1 in un sistema di riferimento cartesiano. Da tale figura si nota
che quando a > 1 il logaritmo assume un valore positivo se il suo argo-
mento è maggiore di 1, viceversa assume valore negativo. Inoltre il
valore del logaritmo è maggiore di 1 se l’argomento del logaritmo è
maggiore della base. Se invece 0 < a < 1 allora il logaritmo è positivo
quando il suo argomento è compreso tra 0 ed 1, viceversa il logaritmo è
negativo. Inoltre il valore del logaritmo è maggiore di 1 se l’argomento
del logaritmo è minore della base.

In base a tali considerazioni si può affermare, ad esempio, che:

a>1 0<a<1

11

  
0 1 1 2 1 2< < < ⇒ >a x x x xa ae log logEquazione 8-4

  
log loga ax x1 2>

  
log x2  

log x1

  
a x x x xa a> < ⇒ <1 1 2 1 2e log logEquazione 8-3

  
log loga ax x1 2<

  
log x2  

log x1
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Figura 8-2

La funzione logaritmica di base a > 1 (a sinistra)

e di base 0 < a < 1 (a destra)



poiché la base 10 è maggiore di 1 e l’argomento 3 è mag-

giore di 1; inoltre poiché l’argomento 3 è minore della base
10.

poiché la base 10 è maggiore di 1 e l’argomento 4 è mag-

giore di 1; inoltre poiché l’argomento 4 è maggiore della base
3.

poiché la base è minore di 1 e l’argomento 3 è maggio-

re di 1.

poiché la base è minore di 1 e l’argomento è minore di

1; inoltre poiché l’argomento è minore della base .

8.4. Teoremi fondamentali dei logaritmi

Teorema del prodotto

Il logaritmo di un prodotto di due (o più) numeri è pari alla somma
dei logaritmi di ciascun numero.

DIM

Si dimostra il teorema per il prodotto di due fattori.
Si pongono:

da cui si ottengono le due seguenti relazioni:

 

c a

c b

x

y

=

=

  

x a

y b
c

c

=
=

log

log

  
log log logc c ca b a b⋅( ) = +Equazione 8-5

 

1

2

1

3 

log1

2

1

3
1>

 

1

3 

1

2 

log1

2

1

3
0>

1

2
log1

2

3 0<

log3 4 1>
log3 4 0>

log10 3 1<
log10 3 0>
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Moltiplicando membro a membro le due equazioni si ottiene:

Per la definizione di logaritmo, l’ultima equazione equivale a:

Specificando i valori di x e y si ottiene la tesi:

Il teorema può essere facilmente esteso al caso di un prodotto di più
di due fattori.

Teorema del rapporto

Il logaritmo di un rapporto di due numeri è pari alla differenza dei
logaritmi di ciascun numero.

DIM

Si pongono:

da cui si ottengono le due seguenti relazioni:

Dividendo membro a membro le due equazioni si ottiene:

 

c a

c b

x

y

=

=

  

x a

y b
c

c

=
=

log

log

  
log log logc c c

a

b
a b





= −Equazione 8-7

  
log ... log log log ...d d d da b c a b c⋅ ⋅ ⋅( ) = + + +Equazione 8-6

  
log log logc c ca b a b+ = ⋅( )

  
x y a bc+ = ⋅( )log

 

c c a b

c a b

x y

x y

⋅ = ⋅

= ⋅+
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Per la definizione di logaritmo, l’ultima equazione equivale a:

Specificando i valori di x e y si ottiene la tesi:

Teorema della potenza

Il logaritmo di una potenza di un numero è pari al prodotto del-
l’esponente per la base del logaritmo del numero.

DIM

Si pone:

da cui si ottiene la seguente relazione:

Elevando a b entrambi i membri:

Per la definizione di logaritmo, l’equazione equivale a:

Specificando il valore di x si ottiene la tesi:

  
b a ac c

b⋅ = ( )log log

  
b x ac

b⋅ = ( )log

c a

c a

x b b

b x b

( ) =
=⋅

c ax =

  
x ac= log

  
log logc

b
ca b a( ) = ⋅Equazione 8-8

  
log log logc c ca b

a

b
− = 





  
x y

a

bc− = 




log

c

c

a

b

c
a

b

x

y

x y

=

=−
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Teorema della radice

Il logaritmo di un radicale è pari al quoziente fra il logaritmo del
radicando e l’indice del radicale.

DIM

Applicando il teorema della potenza si ottiene la tesi:

Esempi. 1) Determinare il valore dei seguenti logaritmi, attraverso i
teoremi fondamentali.

1) log264. Si scompone il 64 in potenza di 2 log264 = log22
6. Appli-

cando l’Equazione 8-8 si ottiene: log22
6 = 6 · log22. Siccome loga a = 1,

allora: 6 · log22 = 6. Quindi log264 = 6.

2) 

3) 

4) 

2) Nei seguenti esempi non è specificata la base comune a tutti i loga-
ritmi, in quanto ininfluente per il risultato algebrico finale.

1) Semplificare la seguente espressione mediante i teoremi fonda-
mentali dei logaritmi .

Applicando l’inversa dell’Equazione 8-8 si ottiene:

Applicando l’inversa dell’Equazione 8-5 si ottiene:

  
log log logx y z2 3+ −

  
2 3log log logx y z+ −

 
log log log7

23
7

2

3
77 7

2

3
7

2

3
= = ⋅ =

log log log log1

3

1

3

3
1

3

3

1

3

27 3
1

3
3

1

3
= = 




= − ⋅ 

−




= −3

 
log log log3 3

1
3

1

3
3 1 3 1= = − ⋅ = −−

  

log log logc
n

c
n

ca a
n

a=




= ⋅

1 1

  
log logc

n
ca

n
a= ⋅

1Equazione 8-9
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Applicando l’inversa dell’Equazione 8-7 si ottiene:

2) Semplificare la seguente espressione mediante le proprietà dei
logaritmi.

Applicando l’inversa dell’Equazione 8-9 si ottiene:

Di seguito si applicano le altre proprietà dei logaritmi.

3) Semplificare la seguente espressione mediante le proprietà dei
logaritmi.

Applicando l’Equazione 8-7 si ottiene:

  
log loga b c23 3( ) −

  

log
a b

c

23

3











  

3 2 3 23 23

3
log log log log loa b c

a

b
−( ) −



 =






− gg

log log

c

a

b
c

23

3

2

233









 =

=




−












= 33 3

2

23

23
2

23 23
log log log

a

b
c

a

b c
−









 =








 =

==








 =







=3

2

2 23

2

2 23

3
6

log log log
a

b c

a

b c

a

bb c

a

b c2 23
3

6

2 2( )
= log

  

3 2 3 2
1

3

2

3log log log log la b c a−






−












= − oog logb c3 23( ) −





  
3 2

1

3

2

3
log log loga b c−




−











  

log
x y

z

2 3⋅





  
log logx y z2 3⋅( ) −
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Applicando l’Equazione 8-5 si ottiene:

Applicando l’Equazione 8-8 e l’Equazione 8-9 si ottiene:

4) Semplificare la seguente espressione mediante le proprietà dei

logaritmi .

Applicando le proprietà dei logaritmi si ottiene:

8.5. Sistemi di logaritmi e cambiamento di base

Sistemi di logaritmi

L’insieme dei logaritmi di tutti i numeri positivi rispetto a una data
base a è detto sistema di logaritmi in base a.

Quando la base a = 10, si ottiene il sistema dei logaritmi decimali.
Quando la base è rappresentata dal numero di Nepero, ossia a = e,

allora si ottiene il sistema dei logaritmi naturali o neperiani.
In generale si fa riferimento a questi due sistemi di logaritmi piutto-

sto che a sistemi in un’altra base. Pertanto quando in questo volume si
omette la base del logaritmo si intende un logaritmo decimale.

Si noti in particolare che la parte intera del logaritmo di un numero
in base 10, aumentata di una unità, è pari al numero di cifre che costi-
tuiscono quel numero. Infatti sia a un numero costituito da n cifre. Si
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ha che: , dove con le parentesi quadre [ ] si vuole indica-
re la parte intera del logaritmo.

Si noti che tale ragionamento vale per qualsiasi sistema di numera-
zione. Ad esempio la parte intera del logaritmo in base 2 di un numero,
aumentata di una unità, è pari al numero di cifre mediante il quale si
rappresenta quel numero nel sistema di numerazione in base 2, ossia il
sistema binario.

Esempio. Il numero 1423 è costituito da 4 cifre. Il logaritmo di tale
numero in base 10 vale log10 1423 = 3,15…; pertanto la parte intera vale

[log10 1423] = 3. Quindi: .

In altri testi il logaritmo in base e può essere indicato anche con
l’espressione lna, con cui si intende il “logaritmo neperiano”.

In generale le calcolatrici scientifiche sono dotate di apposite funzio-
nalità per calcoalre i logaritmi in base 10 oppure in base e.

Teorema del cambiamento di base

Il logaritmo di un numero positivo b, rispetto ad una base a, è dato
dal rapporto dei logaritmi di b e di a rispetto ad un’altra base c.

DIM

Si pone: x = loga b, da cui si ottiene la seguente relazione: ax = b. Si
calcola ora il logaritmo in base c di ambo i membri: logc a

x = logc b. Dal-
l’Equazione 8-8 si ottiene:

Specificando il valore di x si ottiene la tesi:
  

x a b

x
b

a

c c

c

c

⋅ =

=

log log

log

log

  
log

log

loga
c

c

b
b

a
=Equazione 8-10

  
log lne a a=

  
n a= +   ⇒ = +1 4 1 310log

  
n a= +  1 10log
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La proprietà del cambiamento di base può essere utile per calcolare
un logaritmo quando la sua base è diversa da 10 e dal numero di nepe-
ro e. Difatti si può trasportare un logaritmo da una base qualsiasi alla
base 10 oppure e ed utilizzare una calcolatrice scientifica per determi-
nare il valore dei logaritmi in queste basi.

  
log

log

loga
c

c

b
b

a
=
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1) Se a > 0 allora a log a =
a) log aa

b) log a2

c) log 2a
d) 1

2) Il logaritmo di un numero a

positivo in base 5 è un numero b

tale che:
a) b5 = a
b) a5 = b
c) 10b = 5
d) 5b = a

3) Se , allora:

a)

b)

c)

d)

4) Se , allora:

a)

b)

c)

d) 

5) 

a) +4
b) –2
c) +2
d) –4

6) Quanto vale ?

a) –8
b) 4
c) 8
d) –4

7) La quantità è:

a) maggiore di 1
b) compresa tra 0 e 1
c) minore di 0
d) pari ad 1

8) log 4 + log 4 =
a) log 16
b) log 8
c) log 4
d) log 1/4

9) Quale dei seguenti logaritmi dif-
ferisce dagli altri?
a) log2 8
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log 2
2
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log 0 0001

100
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 a bc =
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0
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
<

  a b> > 0
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b) log5 125

c) loga a3

d) log3 81

10) Per a > 0, log an =

a)

b)

c)

d)

11) Il logaritmo decimale di un
numero è negativo:
a) quando il suo argomento è negati-
vo
b) quando il suo argomento è mino-
re di 10
c) quando il suo argomento è mino-
re di 1
d) quando il suo argomento è mag-
giore di 10

12) Se a, b > 0, allora 

a)

b)

c)

d)

13) 

a) 64
b) 16

c)
d) 5

14) 

a) log106

b) log105

c)

d) log10–1

15) Il log10 99,9 è:

a) compreso tra 0 e 1
b) compreso tra 1 e 2
c) compreso tra 1 e 10
d) compreso tra 10 e 100

16) 

a) –1/5
b) 1
c) 5
d) 1/5

17) Il numero decimale 64 da
quante cifre è composto in base
binaria (base 2)?
a) 5
b) 6
c) 7
d) 8
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18) log2 6 + log23 =

a) log2 18

b) log2 9

c) log2 3

d) log2 2

testdiverificatestdiverificatest

Attraverso i teoremi sui logaritmi
ridurre le seguenti espressioni in
un unico logaritmo.

1)

2)

3)

4)

Attraverso i teoremi sui logaritmi
sviluppare i seguenti logaritmi.

5)

6)

7)

8)

  
log
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Soluzioni

testdiverificatestdiverificatest

1 = a

2 = d

3 = a

4 = b

5 = b

6 = d

7 = c

8 = a

9 = d

10 = a

11 = c

12 = b

13 = d

14 = b

15 = b

16 = a

17 = c

18 = a

Quesiti a risposta multipla

1 = [1]

2 =

3 =

4 =

5 =

6 =

7 =

8 =
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