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Il volo con le macchine più pesanti dell’aria è impossibile.

— Lord William Thomson, I barone Kelvin



Prefazione

La fisica classica descrive tutto ciò che di macroscopico ci circonda, così come la sua
interazione con altri oggetti o con l’ambiente circostante. Nell’accezione più genera-
le del termine, la fisica è la scienza che descrive i fenomeni naturali; essa non spiega
però il comportamento della natura, ma il modo in cui noi umani la comprendiamo,
plasmandola inevitabilmente con le nostre percezioni, i nostri occhi e i nostri strumenti
matematici. Per questo motivo, le teorie fisiche sono in costante sviluppo, evolvendosi
verso approssimazioni sempre migliori delle osservazioni sperimentali. Nonostante ad
oggi non sia chiaro se potrà mai esistere una teoria unica, in grado di adattarsi per-
fettamente ai risultati sperimentali di ogni scala, questo non rende la nostra attuale
conoscenza in ambito errata a priori. Non esistono teorie più corrette di altre, ma solo
diverse sfaccettature di approssimazione che rendono alcune teorie più precise di altre.
La meccanica Newtoniana, ad esempio, funziona perfettamente a grandi scale e basse
velocità (molto minori della velocità della luce) e non vi è alcun bisogno di studiare la
caduta dei gravi tramite la meccanica quantistica. Se consideriamo il secondo principio
della dinamica F = ma, potremmo essere portati a pensare che le leggi della natura
vogliano che la forza e l’accelerazione siano uguali a meno di una costante dimensiona-
le. In realtà, la natura si comporta in un modo molto più profondo tuttora a noi ignoto,
che a livello più superficiale può essere descritto da ciò che, intuitivamente, la realtà
circostante ci suggerisce. Questa non è una legge della natura, ma deriva direttamente
da ciò che noi intendiamo con "forza" e da come definiamo "l’accelerazione" e la velo-
cità; fuori dalle scale che si configurano all’interno della nostra esperienza quotidiana,
tale legge risulta approssimativa e non ha alcun potere predittivo. È quindi ovvio che,
da migliaia di anni, la nostra morfologia ci abbia forzato a focalizzare sistematicamente
l’attenzione e le curiosità verso una ristretta categoria di fenomeni, guidandoci verso
una scienza tanto perfetta a determinate dimensioni quanto lacunosa ad altre. Non è
un caso, infatti, che la fisica moderna abbia più problemi alle scale più lontane rispetto
alle nostre dimensioni. Tuttavia, non è opportuno complicare i problemi classici con
strumenti e teorie più raffinate, in quanto la correzione che apporterebbero risulterebbe
irrisoria rispetto agli scopi con cui si affrontano tali esempi. Per questo motivo, per
quanto superato e incoerente in molti ambiti, lo studio dei fondamenti della meccanica
e dell’elettromagnetismo classico sarà sempre importante. Innanzi tutto perché per-
mette, in maniera imprescindibile, la comprensione di molti argomenti più avanzati,
ma anche perché spesso la fisica classica rappresenta l’ottimizzazione migliore tra pre-
cisione e difficoltà. In qualsiasi ambito della scienza, inoltre, la fisica gioca un ruolo
fondamentale e la comprensione dei fenomeni naturali può rivelare l’essenza intrinseca
di ogni quesito ci si presenti davanti. Al fine di adeguarci ai più comuni programmi
di fisica di base della maggior parte dei corsi di laurea, questo libro affronta eserci-
zi afferenti a cinque aree tematiche diverse: Meccanica, Fluidostatica/Fluidodinamica,
Termodinamica ed Elettricità/Magnetismo, per poi concludersi con i fenomeni ondu-



latori. Ognuno dei cinque capitoli corrispondenti alle aree elencate, si suddivide a sua

volta in sottosezioni, al fine di facilitare l’individuazione degli argomenti. All’inizio di

ogni sezione, un breve riassunto riepilogativo anticipa lo svolgimento degli esercizi, in

modo che il lettore possa seguirne più facilmente la risoluzione. Tali pagine introdut-

tive non hanno in alcun modo la pretesa di sostituire la teoria di un libro di testo, che

deve essere assimilata a monte dello svolgimento di qualsivoglia problema. Ci teniamo

altresì a sottolineare che, nonostante le catalogazioni accademiche, abbiamo provato a

rendere molti esercizi quanto più generali possibile, trattando in uno stesso problema

argomenti diversi. Per questo motivo, si consiglia di affrontare ogni capitolo e sezione

con una conoscenza sufficiente riguardo le tematiche relative alle sezioni precedenti.

Gli esercizi, per ogni sezione, sono presentati in ordine di difficoltà crescente, sicché

ogni studente può trovare un intervallo di difficoltà consono, in accordo al proprio per-

corso accademico. L’unica eccezione riguarda gli esercizi teorici, etichettati dall’ap-

posito titolo "Esercizi di teoria" a inizio pagina. Nonostante la maggior parte di essi

segua l’ordine di difficoltà esattamente come gli altri, in qualche occasione si è reso ne-

cessario porli in una posizione che non rispecchia l’effettivo grado di difficoltà. Questa

scelta è stata adoperata laddove la propedeuticità per gli esercizi successivi ha intac-

cato il posizionamento dell’esercizio stesso; spesso, infatti, la dimostrazione teorica di

un dato fenomeno risulta più complessa dell’applicazione a uno specifico problema, e

per completezza abbiamo aggiunto esercizi più teorici volti a colmare qualche lacuna

a cui, inevitabilmente, le poche pagine riassuntive di teoria non hanno potuto sopperi-

re. Alcuni problemi, inoltre, non ammettono soluzione analitica e, spesso, sono risolti

numericamente. Nonostante la risoluzione numerica non sia usualmente inclusa nei

corsi di fisica di base, essa è, il più delle volte, riportata per completezza, dal momento

che l’importanza istruttiva dell’esercizio risiede nello svolgimento del problema nella

sua interezza. L’acquisizione e la padronanza del metodo e dell’approccio da seguire,

prescinde dall’esistenza di una soluzione analitica che, laddove esista, non fornisce al

lettore significative abilità o nozioni in più.

Napoli, Francesco Bajardi

Settembre 2020 Carlo Altucci

Salvatore Capozziello
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13. Un blocco di massam è posto sopra un altro blocco di massaM inizialmente

fermo. Il blocco sottostante viene tirato da una forza F diretta orizzontal-

mente. Tra i due blocchi è presente un coefficiente di attrito µ, mentre il

piano su cui giace il blocco più grande è liscio. Si calcoli il massimo valore

di F oltre il quale il blocco più piccolo inizi a strisciare.

Si raddoppi successivamente tale valore. Trovare l’accelerazione del blocco

più piccolo rispetto a un sistema di riferimento inerziale.

Figura 1.16

La prima parte del problema può essere risolta facilmente nel sistema di riferi-

mento della massa più piccola. Infatti, quando la massaM viene tirata, il sistema

accelera con accelerazione

a =
F

(m+M)
(1.223)

dato che i corpi sono fermi l’uno rispetto all’altro. Il corpo di sopra, quindi, nel

proprio sistema di riferimento sente una forza apparente pari a

Fm = ma = F
m

(m+M)
(1.224)

Quando tale forza apparente è maggiore della forza di attrito, il corpo sovrastante

comincia a strisciare. Dunque la forza massima da poter applicare affinché ciò

non avvenga può essere trovata come

Fm = FAtt → F
m

(m+M)
= mgµ → F = gµ(m+M) (1.225)

Il problema si complica leggermente nel momento in cui dobbiamo trovare l’ac-

celerazione del blocco di massa m. In tal caso è più conveniente rimanere in un

sistema di riferimento inerziale e analizzare le forze che agiscono su ogni blocco.

Il blocco di sotto viene tirato da una forza F2 = 2F (come da testo del problema)

alla quale si oppone l’attrito tra i due blocchi che tenderà a frenare il moto. Si ha

dunque

F2 −mgµ = Ma2 (1.226)

Mentre F2 indica la forza con cui è tirato il blocco sottostante di massa M ,

a2 rappresenta l’accelerazione del blocco stesso, che in generale è diversa da

quella della massa di sopra. Nel sistema inerziale, la massa sovrastante è spinta

solo dalla forza di attrito. Se essa non fosse presente, infatti, il blocco di sopra

rimarrebbe fermo mentre il blocco di sotto striscerebbe tirato dalla forza F2. Si

ha quindi

mgµ = ma1 (1.227)
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Rispetto al sistema in quiete, dunque, le accelerazioni sono







a1 = gµ

a2 =
F2 −mgµ

M

(1.228)

Notiamo che quando F2 = F , si ottiene a1 = a2 = gµ, come ovviamente ci si

aspetta. Quando F2 > F , invece, le accelerazioni saranno diverse. Le equazioni

sembrano inoltre suggerire che quando F2 < mgµ l’accelerazione è negativa.

Questo ovviamente porterebbe a un assurdo, in quanto il corpo di massa M ,

venendo tirato verso sinistra, andrebbe verso destra. In realtà è facile dimostrare

che tale condizione sia irrealizzabile, considerando la natura della forza di attrito.

Quest’ultima assume il valore dimgµ solo quando c’è uno slittamento tra le due

masse, mentre è uguale alla forza apparente sentita dalla massa piccola quando

non c’è slittamento. Ad esempio, quando il sistema è in quiete e la forza è nulla,

anche la forza di attrito è zero. Dato che la forza di attrito assume sempre il

valore

Fa = F2

m

(m+M)
(1.229)

quando F2 < mgµ, la differenza considerata, in tal caso, diventa

F2 − Fa = F2 − F2

m

(m+M)
= F2

(

1−
m

m+M

)

(1.230)

che è sempre maggiore di zero.
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14. Si consideri il problema 4 e lo si risolva nel caso in cui la molla sia posta

in maniera obliqua all’apice di un piano inclinato di angolazione θ rispetto

all’orizzontale.

Il caso è analogo al precedente, ma stavolta va considerata anche la forza di

gravità nel bilancio di forze. L’equazione del moto sarà quindi

− kx−mg sin θ = mẍ (1.231)

Definendo, come nel problema 4, la quantità
√

k/m ≡ ω, l’equazione diventa

− ω2x− g sin θ = ẍ (1.232)

Come mostrato nell’appendice 5.2, la soluzione dell’equazione differenziale è

x(t) = −
g sin θ

ω2
+A cos(ωt) +B sin(ωt) (1.233)

Per trovare le costanti A e B, dobbiamo imporre le condizioni iniziali sulla posi-

zione e sulla velocità. Se a t = 0 la velocità iniziale è nulla, si ottiene B = 0. La
posizione di equilibrio sarà quella dove la risultante delle forze è nulla, ricavabile

tramite l’equazione

mg sin θ = −kxeq → xeq = −
mg sin θ

k
= −

g sin θ

ω2
(1.234)

Se il sistema viene inizialmente perturbato di un tratto x0 rispetto alla posizione

xeq , possiamo imporre x(0) = x0, ottenendo

A = x0 +
g sin θ

ω2
(1.235)

La legge oraria sarà dunque

x(t) =
g sin θ

ω2
[cos(ωt)− 1] + x0 cos(ωt) (1.236)

Si noti che se il piano è orizzontale e dunque θ = 0, ritroviamo l’equazione

(1.153). Viceversa, se la molla è attaccata a un tetto, l’angolo è 90o e l’equazione

diventa

x(t) =
g

ω2
[cos(ωt)− 1] + x0 cos(ωt) (1.237)
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15. Una macchina di Atwood è composta da due masse m1 > m2 collegate a

una carrucola di massa trascurabile per mezzo di una fune inestensibile di

massa M e lunghezza L. Inizialmente, le due masse sono equidistanti dalla
carrucola. Quando il sistema propende versom1, anche la fune scorre verso

tale massa, in modo che il peso complessivo della fune non sia più lo stesso

da entrambi i lati. Scrivere la legge oraria del moto e calcolare dopo quanto

tempo il moto termina.

Se la fune è priva di massa, il moto è ovviamente uniformemente accelerato,

con accelerazione

a =
m1 −m2

m1 +m2

g (1.238)

Lo stesso non vale nel caso in cui la fune abbia massa, onde ci aspettiamo che

l’accelerazione aumenti all’aumentare del tempo. Durante il moto, infatti, la fune

propenderà verso la massa m1, in modo che il peso da una parte della carrucola

sia in continuo aumento, mentre il peso dall’altra parte diminuisce. Indicando

con x lo spostamento della fune, in modo che all’istante iniziale x(0) = 0, il
sistema di equazioni del moto per le due masse sarà:































[

m1 +M

(

L

2
+ x

L

)]

g − T =

[

m1 +M

(

L

2
+ x

L

)]

a

T −

[

m2 +M

(

L

2
− x

L

)]

g =

[

m2 +M

(

L

2
− x

L

)]

a

(1.239)

Il termine M

(

L/2 + x

L

)

è la frazione di massa di fune che propende verso

sinistra, dopo che il sistema ha percorso uno spostamento x.

Sommando le due equazioni ed esplicitando l’accelerazione come derivata se-

conda dello spostamento, si ottiene
(

m1 −m2 + 2M
x

L

)

g = (m1 +m2 +M)ẍ (1.240)

L’equazione differenziale sovrastante ammette come soluzione generale

x(t) = −
L(m1 −m2)

2M
+ c1e

√

2gM
L(m1+m2+M)

t
+ c2e

−

√

2gM
L(m1+m2+M)

t
(1.241)

Per trovare le costanti di integrazione c1 e c2, imponiamo che, all’istante iniziale,

sia lo spostamento che la velocità siano nulli. A tal fine, scriviamo prima la

velocità derivando l’equazione (1.241):

v(t) = c1

√

2gM

L(m1 +m2 +M)
e

√

2gM
L(m1+m2+M)

t
+

− c2

√

2gM

L(m1 +m2 +M)
e
−

√

2gM
L(m1+m2+M)

t
(1.242)

Imponendo dapprima la condizione v(0) = 0, si ottiene la condizione c1 = c2
che, sostituita nella legge oraria, fornisce:

x(t) = −
L(m1 −m2)

2M
+c1

(

e

√

2gM
L(m1+m2+M)

t
+ e

−

√

2gM
L(m1+m2+M)

t

)

(1.243)
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Dal momento che il problema impone che inizialmente le masse siano equidi-

stanti dalla carrucola, possiamo porre x(0) = 0, trovando il valore della costante

di integrazione c1:

c1 =
L(m1 −m2)

4M
(1.244)

Infine, quindi, si ha

x(t) =
L(m1 −m2)

2M

(

1

2
e

√

2gM
L(m1+m2+M)

t

+
1

2
e
−

√

2gM
L(m1+m2+M)

t

− 1

)

(1.245)

Una volta scritta la legge oraria, possiamo calcolare il tempo necessario perché

il moto termini. In particolare, il sistema smette di accelerare quando non vi è

più fune nella parte destra, ovvero quando lo spostamento corrisponde a L/2.
Tramite tale imposizione nella legge oraria del moto, troviamo

L

2
=

L(m1 −m2)

2M

(

1

2
e

√

2gM
L(m1+m2+M)

t

+
1

2
e
−

√

2gM
L(m1+m2+M)

t

− 1

)

(1.246)

da cui

2M

m1 −m2

+ 2 = e

√

2gM
L(m1+m2+M)

t

+ e
−

√

2gM
L(m1+m2+M)

t

(1.247)

e il tempo infine sarà

t =

√

L(m1 +m2 +M)

2gM
ln





M

m1 −m2

+ 1±

√

(

M

m1 −m2

)2

− 1





(1.248)
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16. Una massa M è vincolata a una molla di costante elastica k. Essa poggia su

un piano scabro nella posizione di riposo della molla, inizialmente. Il piano

ha un coefficiente di attrito µ. La molla viene compressa di un tratto x0;

calcolare il numero di oscillazioni prima di fermarsi e scrivere la legge ora-

ria del moto.

A causa dell’attrito, la massa si fermerà dopo qualche oscillazione, in funzione
della posizione x0 di partenza. In un’oscillazione la massa percorre uno sposta-
mento sicuramente minore 4x0: da x0 alla posizione di riposo, per poi allungar-
si, ritornare alla posizione di riposo e comprimersi nuovamente. L’equazione del
moto dalla posizione iniziale al punto di inversione può essere scritta come

− kx+mgµ = mẍ (1.249)

la cui soluzione è

x(t) = c1 cos

(

√

k

m
t

)

+ c2 sin

(

√

k

m
t

)

+
mgµ

k
(1.250)

È importante dividere il problema in tante fasi quanti sono i cambi di verso
del moto della massa; il motivo è da ricercare nel segno della forza di attrito,
sempre discorde alla velocità, che non permette di scrivere un’unica equazione
descrivente il moto nella sua interezza.

Dalle condizioni iniziali possiamo trovare le costanti c1 e c2; basta imporre
x(0) = x0 e v(0) = 0:

x(0) = c1 +
mgµ

k
= x0 (1.251)

da cui
c1 = x0 −

mgµ

k
(1.252)

Definiamo per semplicità k/m ≡ ω2, sicché la legge oraria diventa

x(t) =
(

x0 −

gµ

ω2

)

cos(ωt) + c2 sin(ωt) +
gµ

ω2
(1.253)

Troviamo quindi la velocità derivando rispetto al tempo

v(t) = −ω
(

x0 −

gµ

ω2

)

sin(ωt) + c2ω cos(ωt) (1.254)

Imponendo v(0) = 0 si trova c2 = 0, quindi la legge oraria sarà

x(t) = x0 cos(ωt) +
gµ

ω2
[1− cos(ωt)] (1.255)

e la velocità in funzione del tempo

v(t) =
(gµ

ω2
− x0

)

ω sin(ωt) (1.256)

Quindi, supposto che si verifichino le condizioni iniziali per il moto, ovvero che

x0 >
gµ

ω2
(1.257)
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il corpo si fermerà nella posizione

x1 =
2gµ

ω2
− x0 (1.258)

Iteriamo il processo un’altra volta, in modo da trovare la posizione nel secondo

punto di inversione. In tal caso la legge oraria è la stessa, a parte la forza di attrito

che cambierà direzione. Questo equivale banalmente alla sostituzione µ→ −µ,

dato che il coefficiente di attrito compare solo nel termine additivo della legge

oraria. Le condizioni al contorno sono diverse, in quanto la posizione iniziale

non è più x0, ma x1. Scrivendo

x(t) = c1 cos

(

√

k

m
t

)

+ c2 sin

(

√

k

m
t

)

−

mgµ

k
(1.259)

e imponendo x(0) = x1 e v(0) = 0 si ottene

x(t) = x1 cos(ωt)−
gµ

ω2
[1− cos(ωt)] (1.260)

v(t) =
(

−

gµ

ω2
− x1

)

ω sin(ωt) (1.261)

Quindi il corpo si fermerà nuovamente nella posizione

x2 = −
2gµ

ω2
− x1 = x0 −

4gµ

ω2
(1.262)

Ci aspettiamo quindi, che dopo l’ennesimo punto di inversione la posizione sarà

xn = (−1)n
(

x0 −

2ngµ

ω2

)

(1.263)

Il corpo non ripartirà più quando kxn = mgµ, ovvero

xn =
gµ

ω2
(1.264)

Sostituendo l’equazione (1.264) nella (1.263), otteniamo la condizione

x0 −

2ngµ

ω2
=

gµ

ω2
(1.265)

da cui, infine, isolando il numero di semi-oscillazioni si ricava

n =
1

2

(

ω2x0

2gµ
− 1

)

(1.266)

Il numero di punti di inversione che il corpo percorre prima di fermarsi, può

essere trovato prendendo la parte intera dell’equazione (1.266)
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17. Si consideri il sistema in figura, costituito da due masse m1, m2 e tre molle

con diverse costanti elastiche. Se d è la larghezza totale, le molle sono a

riposo quando la massa 1 è nella posizione d/3 e la massa 2 nella posizione

2d/3. Il sistema viene perturbato e le molle cominciano a oscillare attorno

alla posizione di equilibrio. Trovare le leggi orarie del moto per le duemasse.

Figura 1.17

Possiamo impostare un’equazione differenziale per ogni massa, del tipo F =
ma. La prima massa risente di due forze, date dalla molla di sinistra e dalla

molla centrale. La seconda massa risente delle forze dovute alla molla centrale e

alla molla di destra. Il sistema di equazioni allora sarà:

{

m1ẍ1 = −k1∆x1 + k2∆x2

m2ẍ2 = −k2∆x2 + k3∆x3

(1.267)

Sapendo che la posizione di riposo è x0 = d/3, possiamo scrivere ∆x1, ∆x2 e

∆x3 come


























∆x1 = x1 −
d

3

∆x2 = x2 −
d

3
−

(

x1 −
d

3

)

= x2 − x1

∆x3 =
d

3
− x2

(1.268)

dunque sostituendo si ha















m1ẍ1 = −k1

(

x1 −
d

3

)

+ k2(x2 − x1)

m2ẍ2 = −k2(x2 − x1) + k3

(

d

3
− x2

) (1.269)

Al fine di risolvere il sistema, poniamo per semplicità k1 = k2 = k3 ≡ k,
m1 = m2 ≡ m e ω2 ≡ k

m
. Risolvendo il sistema si ottiene

x1(t) =
1

18

[

10d+ 9(c1 + c3) cos(ωt) + 9(c1 − c4) cos(
√
3ωt)+

+
9(c2 + c4)

ω
sin(ωt) +

3
√
3(c2 − c4)

ω
sin(

√
3ωt)

]

(1.270)

x2(t) =
1

18

[

14d+ 9(c1 + c3) cos(ωt) + 9(c3 − c1) cos(
√
3ωt)+

+
9(c2 + c4)

ω
sin(ωt)−

3
√
3(c2 − c4)

ω
sin(

√
3ωt)

]

(1.271)
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Le costanti di integrazione ci possono essere trovate imponendo le condizioni

iniziali di velocità nulla e posizione x01 e x02, ovvero



















x1(0) = x10

x2(0) = x20

ẋ1(0) = 0

ẋ2(0) = 0

(1.272)

Le ultime due danno c2 = c4 = 0, mentre le prime due portano alle equazioni



















c1 +
c3

2
+

5d

9
= x10

c3 +
7d

9
= x20

(1.273)

che risolte, danno

1

6
(−d+ 6x10 − 3x20) c3 = x20 −

7

9
d (1.274)

Infine, quindi, sostituendo il valore delle costanti testé trovate, la soluzione sarà

x1(t) =
1

36

[

(20d+ (−17d+ 9(2x10 + x20)) cos(ωt)− 3(d− 6x10 + 3x20) cos(
√
3ωt)

]

x2(t) =
1

36

[

(28d+ (−17d+ 9(2x10 + x20)) cos(ωt) + (−11d− 18x10 + 27x20) cos(
√
3ωt)

]

Lo stesso risultato, tramite la meccanica lagrangiana, può essere trovato sem-

plicemente definendo le posizioni delle due masse e gli spostamenti. In un cer-

to senso, questo è stato già fatto precedentemente nello sviluppo del sistema

(1.268); la Lagrangiana sarà

L =
1

2

[

m1ẋ
2

1
+m2ẋ

2

2
− k1∆x

2

1
− k2∆x

2

2
− k3∆x

2

3

]

(1.275)

e, esplicitando i ∆xi, essa può essere scritta come

L =
1

2

[

m1ẋ
2

1
+m2ẋ

2

2
− k1

(

x1 −
d

3

)2

− k2 (x2 − x1)
2 − k3

(

d

3
− x2

)2
]

(1.276)

Le equazioni di Eulero-Lagrange danno esattamente le stesse equazioni del moto

già trovate.
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18. Si consideri una massa m1 vincolata a muoversi lungo la direzione oriz-

zontale. Ad essa viene legato un pendolo di massa m2 tramite una fune

inestensibile di lunghezza L. scrivere le equazioni del moto per le due masse.

Figura 1.18

Scrivere le equazioni del moto significa pervenire a una coppia di equazioni dif-

ferenziali la cui soluzione fornisce le leggi orarie dei rispettivi corpi. A tal fine,

consideriamo le forze che agiscono su ogni massa:











T sin θ = m1a1

T sin θ = m2a2x

m2g − T cos θ = m2a2y

(1.277)

Ipotizzando un angolo iniziale θ0, analogamente a prima possiamo scrivere le

accelerazioni come











a2x =
d2

dt2
(−x− L sin θ) = −ẍ− L cos θ θ̈ + L sin θ θ̇2

a2y =
d2

dt2
(L cos θ − L cos θ0) = −L cos θ θ̇2 − L sin θ θ̈

(1.278)

Dalla seconda equazione del sistema, è possibile scrivere la tensione come

T =
m2a2x

sin θ
=

m2

sin θ

(

−ẍ− L cos θ θ̈ + L sin θ θ̇2
)

(1.279)

e sostituendo nella prima e nella terza equazione rispettivamente, si ottiene

{

m2ẍ+m2L cos θ θ̈ −m2L sin θ θ̇2 +m1ẍ = 0

g sin θ + ẍ cos θ + Lθ̈ = 0
(1.280)

Il sistema di equazioni del moto non è risolvibile analiticamente, quindi non

scriveremo esplicitamente la dipendenza delle posizioni dal tempo.

Anche questa volta, possiamo pervenire allo stesso risultato tramite la meccanica

Lagrangiana. L’ascissa complessiva della massa 2 sarà

x2 = x+ L sin θ (1.281)
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mentre l’ordinata, come prima, sarà

y2 = L cos θ (1.282)

In coordinate polari dunque, il raggio vettore che unisce il punto iniziale del

sistema con la massa 2 è

ρ =
√

(x+ L sin θ)2 + (L cos θ)2 =
√

x2 + L2 + 2Lx sin θ (1.283)

e l’angolo che tale raggio vettore forma rispetto alla verticale è

θ3 = arctan

(

x+ L sin θ

L cos θ

)

(1.284)

La Lagrangiana, dunque, può essere scritta come

L =
1

2
m1ẋ

2 +
1

2
m2

(

ρ̇2 + ρ2θ̇2
3

)

+m2gL cos θ (1.285)

Sostituendo ρ e θ3 si ottiene

L =
1

2

[

(m1 +m2)ẋ
2 + 2Lm2 cos θ ẋθ̇ +m2L

2θ̇2 + 2m2gL cos θ
]

(1.286)

Le equazioni di Eulero-Lagrange rispetto a x e θ, danno rispettivamente



















d

dt

∂L

∂ẋ
−

∂L

∂x
= 0 → (m1 +m2)ẍ−m2L sin θ θ̇2 +m2L cos θ θ̈ = 0

d

dt

∂L

∂θ̇
−

∂L

∂θ
= 0 → g sin θ + ẍ cos θ + Lθ̈ = 0

(1.287)

Come ovviamente ci aspettiamo.




