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Prefazione

La fisica classica descrive tutto cio che di macroscopico ci circonda, cosi come la sua
interazione con altri oggetti o con 1’ambiente circostante. Nell’accezione pill genera-
le del termine, la fisica ¢ la scienza che descrive i fenomeni naturali; essa non spiega
pero il comportamento della natura, ma il modo in cui noi umani la comprendiamo,
plasmandola inevitabilmente con le nostre percezioni, i nostri occhi e i nostri strumenti
matematici. Per questo motivo, le teorie fisiche sono in costante sviluppo, evolvendosi
verso approssimazioni sempre migliori delle osservazioni sperimentali. Nonostante ad
oggi non sia chiaro se potra mai esistere una teoria unica, in grado di adattarsi per-
fettamente ai risultati sperimentali di ogni scala, questo non rende la nostra attuale
conoscenza in ambito errata a priori. Non esistono teorie pill corrette di altre, ma solo
diverse sfaccettature di approssimazione che rendono alcune teorie pill precise di altre.
La meccanica Newtoniana, ad esempio, funziona perfettamente a grandi scale e basse
velocita (molto minori della velocita della luce) e non vi & alcun bisogno di studiare la
caduta dei gravi tramite la meccanica quantistica. Se consideriamo il secondo principio
della dinamica F' = ma, potremmo essere portati a pensare che le leggi della natura
vogliano che la forza e I’accelerazione siano uguali a meno di una costante dimensiona-
le. In realta, la natura si comporta in un modo molto pilt profondo tuttora a noi ignoto,
che a livello piu superficiale puo essere descritto da cio che, intuitivamente, la realta
circostante ci suggerisce. Questa non ¢ una legge della natura, ma deriva direttamente
da cio che noi intendiamo con "forza" e da come definiamo "I’accelerazione" e la velo-
cita; fuori dalle scale che si configurano all’interno della nostra esperienza quotidiana,
tale legge risulta approssimativa e non ha alcun potere predittivo. E quindi ovvio che,
da migliaia di anni, la nostra morfologia ci abbia forzato a focalizzare sistematicamente
I’attenzione e le curiosita verso una ristretta categoria di fenomeni, guidandoci verso
una scienza tanto perfetta a determinate dimensioni quanto lacunosa ad altre. Non &
un caso, infatti, che la fisica moderna abbia piu problemi alle scale pill lontane rispetto
alle nostre dimensioni. Tuttavia, non & opportuno complicare i problemi classici con
strumenti e teorie pil raffinate, in quanto la correzione che apporterebbero risulterebbe
irrisoria rispetto agli scopi con cui si affrontano tali esempi. Per questo motivo, per
quanto superato e incoerente in molti ambiti, lo studio dei fondamenti della meccanica
e dell’elettromagnetismo classico sara sempre importante. Innanzi tutto perché per-
mette, in maniera imprescindibile, la comprensione di molti argomenti piti avanzati,
ma anche perché spesso la fisica classica rappresenta 1’ottimizzazione migliore tra pre-
cisione e difficolta. In qualsiasi ambito della scienza, inoltre, la fisica gioca un ruolo
fondamentale e la comprensione dei fenomeni naturali puo rivelare I’essenza intrinseca
di ogni quesito ci si presenti davanti. Al fine di adeguarci ai pill comuni programmi
di fisica di base della maggior parte dei corsi di laurea, questo libro affronta eserci-
zi afferenti a cinque aree tematiche diverse: Meccanica, Fluidostatica/Fluidodinamica,
Termodinamica ed Elettricita/Magnetismo, per poi concludersi con i fenomeni ondu-
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latori. Ognuno dei cinque capitoli corrispondenti alle aree elencate, si suddivide a sua
volta in sottosezioni, al fine di facilitare I’individuazione degli argomenti. All’inizio di
ogni sezione, un breve riassunto riepilogativo anticipa lo svolgimento degli esercizi, in
modo che il lettore possa seguirne piu facilmente la risoluzione. Tali pagine introdut-
tive non hanno in alcun modo la pretesa di sostituire la teoria di un libro di testo, che
deve essere assimilata a monte dello svolgimento di qualsivoglia problema. Ci teniamo
altresi a sottolineare che, nonostante le catalogazioni accademiche, abbiamo provato a
rendere molti esercizi quanto piu generali possibile, trattando in uno stesso problema
argomenti diversi. Per questo motivo, si consiglia di affrontare ogni capitolo e sezione
con una conoscenza sufficiente riguardo le tematiche relative alle sezioni precedenti.
Gli esercizi, per ogni sezione, sono presentati in ordine di difficolta crescente, sicché
ogni studente puo trovare un intervallo di difficolta consono, in accordo al proprio per-
corso accademico. L’unica eccezione riguarda gli esercizi teorici, etichettati dall’ap-
posito titolo "Esercizi di teoria" a inizio pagina. Nonostante la maggior parte di essi
segua I’ordine di difficolta esattamente come gli altri, in qualche occasione si € reso ne-
cessario porli in una posizione che non rispecchia I’effettivo grado di difficolta. Questa
scelta ¢ stata adoperata laddove la propedeuticita per gli esercizi successivi ha intac-
cato il posizionamento dell’esercizio stesso; spesso, infatti, la dimostrazione teorica di
un dato fenomeno risulta pitt complessa dell’applicazione a uno specifico problema, e
per completezza abbiamo aggiunto esercizi piu teorici volti a colmare qualche lacuna
a cui, inevitabilmente, le poche pagine riassuntive di teoria non hanno potuto sopperi-
re. Alcuni problemi, inoltre, non ammettono soluzione analitica e, spesso, sono risolti
numericamente. Nonostante la risoluzione numerica non sia usualmente inclusa nei
corsi di fisica di base, essa ¢, il piu delle volte, riportata per completezza, dal momento
che I'importanza istruttiva dell’esercizio risiede nello svolgimento del problema nella
sua interezza. L’acquisizione e la padronanza del metodo e dell’approccio da seguire,
prescinde dall’esistenza di una soluzione analitica che, laddove esista, non fornisce al
lettore significative abilitad o nozioni in pil.

Napoli, Francesco Bajardi
Settembre 2020 Carlo Altucci
Salvatore Capozziello
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13. Un blocco di massa m € posto sopra un altro blocco di massa )M inizialmente
fermo. Il blocco sottostante viene tirato da una forza F' diretta orizzontal-
mente. Tra i due blocchi ¢ presente un coefficiente di attrito ., mentre il
piano su cui giace il blocco piu grande e liscio. Si calcoli il massimo valore
di F oltre il quale il blocco piu piccolo inizi a strisciare.

Si raddoppi successivamente tale valore. Trovare 1’accelerazione del blocco
piu piccolo rispetto a un sistema di riferimento inerziale.

Figura 1.16

La prima parte del problema puo essere risolta facilmente nel sistema di riferi-
mento della massa piu piccola. Infatti, quando la massa M viene tirata, il sistema

accelera con accelerazione
F

4= —- 1.223
(m+ M) ( )
dato che i corpi sono fermi I’uno rispetto all’altro. Il corpo di sopra, quindi, nel
proprio sistema di riferimento sente una forza apparente pari a
m

F,, = =F— 1.224
ma (m+ M) ( )

Quando tale forza apparente ¢ maggiore della forza di attrito, il corpo sovrastante
comincia a strisciare. Dunque la forza massima da poter applicare affinché cio
non avvenga puo essere trovata come

F, =Fyy — F =mgu — F=gu(m+ M) (1.225)

m
(m+ M)
Il problema si complica leggermente nel momento in cui dobbiamo trovare 1’ac-
celerazione del blocco di massa m. In tal caso ¢ pill conveniente rimanere in un
sistema di riferimento inerziale e analizzare le forze che agiscono su ogni blocco.
Il blocco di sotto viene tirato da una forza F» = 2F' (come da testo del problema)
alla quale si oppone I’attrito tra i due blocchi che tendera a frenare il moto. Si ha
dunque

Fy —mgp = Mas (1.226)

Mentre F5 indica la forza con cui ¢ tirato il blocco sottostante di massa M,
as rappresenta I’accelerazione del blocco stesso, che in generale ¢ diversa da
quella della massa di sopra. Nel sistema inerziale, la massa sovrastante ¢ spinta
solo dalla forza di attrito. Se essa non fosse presente, infatti, il blocco di sopra
rimarrebbe fermo mentre il blocco di sotto striscerebbe tirato dalla forza F5. Si
ha quindi

mgp = may (1.227)
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Rispetto al sistema in quiete, dunque, le accelerazioni sono

ay = gp

a9 = Vi

Notiamo che quando F, = F), si ottiene a; = as = gu, come ovviamente ci si
aspetta. Quando F, > F', invece, le accelerazioni saranno diverse. Le equazioni
sembrano inoltre suggerire che quando F, < mgu I’accelerazione ¢ negativa.
Questo ovviamente porterebbe a un assurdo, in quanto il corpo di massa M,
venendo tirato verso sinistra, andrebbe verso destra. In realta ¢ facile dimostrare
che tale condizione sia irrealizzabile, considerando la natura della forza di attrito.
Quest’ultima assume il valore di mgu solo quando c¢’¢ uno slittamento tra le due
masse, mentre ¢ uguale alla forza apparente sentita dalla massa piccola quando
non c’¢ slittamento. Ad esempio, quando il sistema ¢ in quiete e la forza & nulla,
anche la forza di attrito ¢ zero. Dato che la forza di attrito assume sempre il
valore

m
F,=F— 1.229
2 (m+ M) ( )
quando Fy < mgpu, la differenza considerata, in tal caso, diventa
m m
F—F,=F—Fh——=F(1— —— 1.230
2 2 2(m ) 2 < oy M> ( )

che ¢ sempre maggiore di zero.
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14. Si consideri il problema 4 e lo si risolva nel caso in cui la molla sia posta
in maniera obliqua all’apice di un piano inclinato di angolazione ¢ rispetto
all’orizzontale.

Il caso ¢ analogo al precedente, ma stavolta va considerata anche la forza di
gravita nel bilancio di forze. L’equazione del moto sara quindi

—kxr —mgsinf = mi (1.231)

Definendo, come nel problema 4, la quantita \/W = w, I’equazione diventa
—wz —gsinh =i (1.232)

Come mostrato nell’appendice 5.2, la soluzione dell’equazione differenziale ¢

x(t) = 798120 + Acos(wt) + Bsin(wt) (1.233)
w

Per trovare le costanti A e B, dobbiamo imporre le condizioni iniziali sulla posi-
zione e sulla velocita. Se at = 0 la velocita iniziale & nulla, si ottiene B = 0. La
posizione di equilibrio sara quella dove la risultante delle forze & nulla, ricavabile
tramite 1’equazione

mgsing  gsinf

mgsing = —kxeq — Teq = — ? = 2 (1.234)

Se il sistema viene inizialmente perturbato di un tratto x rispetto alla posizione
Zeq, possiamo imporre x(0) = o, ottenendo

gsinf

A=
Z0+ w2

(1.235)

La legge oraria sara dunque

(t) =2 229 [cos(wt) — 1] + z cos(wt) (1.236)

Si noti che se il piano ¢ orizzontale e dunque = 0, ritroviamo 1’equazione
(1.153). Viceversa, se la molla ¢ attaccata a un tetto, I’angolo ¢ 90° e I’equazione
diventa

z(t) = % [cos(wt) — 1] + x( cos(wt) (1.237)
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15. Una macchina di Atwood ¢ composta da due masse m; > mo collegate a

una carrucola di massa trascurabile per mezzo di una fune inestensibile di
massa ) e lunghezza L. Inizialmente, le due masse sono equidistanti dalla
carrucola. Quando il sistema propende verso 11, anche la fune scorre verso
tale massa, in modo che il peso complessivo della fune non sia piu lo stesso
da entrambi i lati. Scrivere la legge oraria del moto e calcolare dopo quanto
tempo il moto termina.

Se la fune ¢ priva di massa, il moto ¢ ovviamente uniformemente accelerato,
con accelerazione

a="2"M2, (1.238)

mi + mo

Lo stesso non vale nel caso in cui la fune abbia massa, onde ci aspettiamo che
I’accelerazione aumenti all’aumentare del tempo. Durante il moto, infatti, la fune
propendera verso la massa m;, in modo che il peso da una parte della carrucola
sia in continuo aumento, mentre il peso dall’altra parte diminuisce. Indicando
con z lo spostamento della fune, in modo che all’istante iniziale z(0) = 0, il

sistema di equazioni del moto per le due masse sara:

L
m1+M<2L )
+M it | | +M 5o
my || 9=|m — ||

L/2+z

. _
Ly
g-—T= m1—|—M<2Lx> a

(1.239)

T —

Il termine M ¢ la frazione di massa di fune che propende verso

sinistra, dopo che il sistema ha percorso uno spostamento x.

Sommando le due equazioni ed esplicitando 1’accelerazione come derivata se-
conda dello spostamento, si ottiene

(ml ~ g+ QM%) g = (m1 +ms + M) (1.240)

L’equazione differenziale sovrastante ammette come soluzione generale
Limy—m [ 2gM _ [ _2aM
x(t) _ ( 1 2) + ¢peV Timitma i) t + coe T(mitmotdD) b (1.241)
2M
Per trovare le costanti di integrazione ¢, e co, imponiamo che, all’istante iniziale,

sia lo spostamento che la velocita siano nulli. A tal fine, scriviamo prima la
velocita derivando 1’equazione (1.241):

2gM —_agm
t = c L(mq+mo+M)
v(®) cl\/L(ml—l—mQ—kM)e +
2gM S o S
- (m1fma A0 1.242
CQ\/L(m1+m2+M)6 e (1.242)

Imponendo dapprima la condizione v(0) = 0, si ottiene la condizione ¢; = ¢
che, sostituita nella legge oraria, fornisce:

a(t) = —Lm—ma) (ev T TV Tt t) (1243)

2M
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Dal momento che il problema impone che inizialmente le masse siano equidi-
stanti dalla carrucola, possiamo porre 2(0) = 0, trovando il valore della costante
di integrazione c;:

L(m1 — TTLQ)

1.244
7 (1.244)

Cc1 =
Infine, quindi, si ha

— 29 M 29 M
_ L(ml m2) (16\/ L(mlfm2+M) t + 167\/ L(mlfm2+M) L 1)
2 2

x(t) i
(1.245)

Una volta scritta la legge oraria, possiamo calcolare il tempo necessario perché
il moto termini. In particolare, il sistema smette di accelerare quando non vi &
pil fune nella parte destra, ovvero quando lo spostamento corrisponde a L /2.
Tramite tale imposizione nella legge oraria del moto, troviamo

L_ Lm —ma) <;e\/ T tons Ty b + %e*\/ﬁyﬁmt _ 1> (1.246)

2 2M

da cui

Mo Vet oV T (1.247)

myp —ms

e il tempo infine sara

2
po JHmtme M) M (M N
2gM mi — Mo mi — Mo

(1.248)
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16. Una massa M e vincolata a una molla di costante elastica . Essa poggia su

un piano scabro nella posizione di riposo della molla, inizialmente. Il piano
ha un coefficiente di attrito ;.. La molla viene compressa di un tratto z(;
calcolare il numero di oscillazioni prima di fermarsi e scrivere la legge ora-
ria del moto.

A causa dell’attrito, la massa si fermera dopo qualche oscillazione, in funzione
della posizione x( di partenza. In un’oscillazione la massa percorre uno sposta-
mento sicuramente minore 4x: da x alla posizione di riposo, per poi allungar-
si, ritornare alla posizione di riposo e comprimersi nuovamente. L’equazione del
moto dalla posizione iniziale al punto di inversione puo essere scritta come

— kx + mgu = mz (1.249)

la cui soluzione &

z(t) = ¢1 cos (ﬁt) + cosin (ﬁt) + mIp (1.250)
m m k

E importante dividere il problema in tante fasi quanti sono i cambi di verso
del moto della massa; il motivo ¢ da ricercare nel segno della forza di attrito,
sempre discorde alla velocitd, che non permette di scrivere un’unica equazione
descrivente il moto nella sua interezza.

Dalle condizioni iniziali possiamo trovare le costanti ¢; e co; basta imporre
2(0) = zp e v(0) = 0:
mgp

z(0) =c1 + =0 (1.251)
da cui m
e =z — 98 (1.252)
k
Definiamo per semplicita k/m = w?, sicché la legge oraria diventa
gH } i, gH
x(t) = (mo - E) cos(wt) + co sin(wt) + 2 (1.253)
Troviamo quindi la velocita derivando rispetto al tempo
_ gHyN .
v(t) = —w (xo — 2 sin(wt) 4 cow cos(wt) (1.254)

Imponendo v(0) = 0 si trova co = 0, quindi la legge oraria sara
_ gp
x(t) = zq cos(wt) + =5 [1 — cos(wt)] (1.255)
w
e la velocita in funzione del tempo

o(t) = (i—’; - xo) wsin(wt) (1.256)

Quindi, supposto che si verifichino le condizioni iniziali per il moto, ovvero che

x> 2 (1.257)
w
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il corpo si fermera nella posizione

2
€ = % — z (1.258)

Iteriamo il processo un’altra volta, in modo da trovare la posizione nel secondo
punto di inversione. In tal caso la legge oraria ¢ la stessa, a parte la forza di attrito
che cambiera direzione. Questo equivale banalmente alla sostituzione 1 — —,
dato che il coefficiente di attrito compare solo nel termine additivo della legge
oraria. Le condizioni al contorno sono diverse, in quanto la posizione iniziale
non & pill g, ma x1. Scrivendo

x(t) = ¢; cos <\/?t> + ¢y sin <\/?t> _ M9k (1.259)
m m k

e imponendo z(0) = z; e v(0) = 0 si ottene

z(t) = x1 cos(wt) — % [1 — cos(wt)] (1.260)
w
u(t) = (—Z—Z — xl) w sin(wt) (1.261)
Quindi il corpo si fermera nuovamente nella posizione
2 4
wy= = g =gy - I (1.262)
w w

Ci aspettiamo quindi, che dopo I’ennesimo punto di inversione la posizione sara
n 2ngp
Tp = (1" (20— 2 (1.263)

Il corpo non ripartira pitt quando kx,, = mgu, ovvero

I (1.264)
w
Sostituendo 1’equazione (1.264) nella (1.263), otteniamo la condizione
2
wo— —I91 _ 98 (1.265)
w w
da cui, infine, isolando il numero di semi-oscillazioni si ricava
1 2
==Yty (1.266)
2\ 2gp

Il numero di punti di inversione che il corpo percorre prima di fermarsi, puo
essere trovato prendendo la parte intera dell’equazione (1.266)
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17. Si consideri il sistema in figura, costituito da due masse m, m- e tre molle
con diverse costanti elastiche. Se d & la larghezza totale, le molle sono a
riposo quando la massa 1 ¢ nella posizione d/3 e la massa 2 nella posizione
2d/3. 1l sistema viene perturbato e le molle cominciano a oscillare attorno
alla posizione di equilibrio. Trovare le leggi orarie del moto per le due masse.

ky ks ks

LW AVAVAVAVAVA IRU%

Figura 1.17

Possiamo impostare un’equazione differenziale per ogni massa, del tipo F' =
ma. La prima massa risente di due forze, date dalla molla di sinistra e dalla
molla centrale. La seconda massa risente delle forze dovute alla molla centrale e
alla molla di destra. Il sistema di equazioni allora sara:

(1.267)

TTLlfl:'l = —klA.’Ill + kgA.’L’Q
mgiz = 7]'{32AI2 + k)gAxg

Sapendo che la posizione di riposo & z¢p = d/3, possiamo scrivere Az, Axg e

Ax3 come
A.’L‘l =T — g
3
AIQ = T — g — <l‘1 — d) = T2 — I (1268)
3 3
Aibg = g — T2

dunque sostituendo si ha

d
mldﬁl = —kl X, — = —+ k’Q(ZL‘Q — l‘l)
3 > (1.269)

. d
Moo = —kg(.%’g — 1'1) + k3 (3 — X2

Al fine di risolvere il sistema, poniamo per semplicita k1 = ko = k3 = k,
my=me=mew?= % Risolvendo il sistema si ottiene

x1(t) = % [106[ + 9(c1 + ¢3) cos(wt) + 9(c1 — ¢4) cos(V/3wt)+
+w sin(wt) + M sin(\/gwt)] (1.270)
ra(t) = % [14 4 9(c1 + ) cos(cwt) + 9(es — ex) cos(v/Bwt) +

+w sin(wt) — M sin(\/gwt)] (1.271)
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Le costanti di integrazione c; possono essere trovate imponendo le condizioni
iniziali di velocita nulla e posizione xg; € Zg2, OVvero

Il(O) = T10

%'2(0) = I20

£1(0) = 0 (1.272)
IQ(O) =

Le ultime due danno ¢, = ¢4 = 0, mentre le prime due portano alle equazioni

LB, o
C1 B) 9 T10
(1.273)
7d
c3 + j = X920
che risolte, danno
1 7
6(_d + 6210 — 3.’]}20) C3 = Too — §d (1.274)

Infine, quindi, sostituendo il valore delle costanti testé trovate, la soluzione sara

xi(t) = % [(QOd + (—17d + 9(2x 10 + w20)) cos(wt) — 3(d — 6210 + 3x20) cos(\/gwt)}
xo(t) = % [(28d + (=17d + 9(2w10 + 220)) cos(wt) + (—11d — 18219 + 27x20) cos(\/gwt)}

Lo stesso risultato, tramite la meccanica lagrangiana, pud essere trovato sem-
plicemente definendo le posizioni delle due masse e gli spostamenti. In un cer-
to senso, questo ¢ stato gia fatto precedentemente nello sviluppo del sistema
(1.268); la Lagrangiana sara

1
L= [m1d] + mois — k1 Az} — koAz3 — kzAxs] (1.275)
e, esplicitando i Az;, essa puo essere scritta come

1 & o d\> ) d 2
£:§ m1x1+m2x2—k1 xr| — — —kz(%g—xl) — k3 g—xg

3
(1.276)
Le equazioni di Eulero-Lagrange danno esattamente le stesse equazioni del moto
gia trovate.
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18. Si consideri una massa m; vincolata a muoversi lungo la direzione oriz-
zontale. Ad essa viene legato un pendolo di massa mo tramite una fune
inestensibile di lunghezza L. scrivere le equazioni del moto per le due masse.

Figura 1.18

Scrivere le equazioni del moto significa pervenire a una coppia di equazioni dif-
ferenziali la cui soluzione fornisce le leggi orarie dei rispettivi corpi. A tal fine,
consideriamo le forze che agiscono su ogni massa:

Tsinf = mya;
Tsinf = Mo, (1.277)

maog — T cos 0 = maay,

Ipotizzando un angolo iniziale ¢, analogamente a prima possiamo scrivere le
accelerazioni come
d2 . .
a2e = —5 (=x — Lsin®) = —& — Lcos00 + Lsin66?
sztQ _ ) (1.278)
azg = o5 (Lcosf — Leosby) = —Lcosf6? — Lsinhd

Dalla seconda equazione del sistema, ¢ possibile scrivere la tensione come

m2a2y ma
T = =

(—i—Lcos@é+Lsin992) (1.279)

sin 6 sin 6

e sostituendo nella prima e nella terza equazione rispettivamente, si ottiene

{m2i+m2Lcos95mzLSineészmlj0 (1.280)

gsing + icosf+ LH =0
Il sistema di equazioni del moto non ¢ risolvibile analiticamente, quindi non
scriveremo esplicitamente la dipendenza delle posizioni dal tempo.
Anche questa volta, possiamo pervenire allo stesso risultato tramite la meccanica

Lagrangiana. L’ascissa complessiva della massa 2 sara

r9 =2+ Lsinf (1.281)
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mentre 1’ordinata, come prima, sara
y2 = Lcosf (1.282)

In coordinate polari dunque, il raggio vettore che unisce il punto iniziale del
sistema con la massa 2 ¢

p=+/(x+ Lsin6)? + (Lcos#)? = /22 + L2 + 2Lasinb (1.283)

e I’angolo che tale raggio vettore forma rispetto alla verticale ¢

Lsin6
0y = arctan | 22907 (1.284)
Lcosf
La Lagrangiana, dunque, puo essere scritta come
Lo .o 1 2 242
L= imlx + §m2 (p +p 93) + mogL cosf (1.285)
Sostituendo p e 63 si ottiene
1 . .
L= (m1 + mo)i? 4+ 2Lmy cos 0 &0 + maL?6? + 2magL cos@| (1.286)

Le equazioni di Eulero-Lagrange rispetto a « e 6, danno rispettivamente

d oL oL .. A2 j
%%_371’70 — (my1 +m2)d —maoLsin® 0 + moLcosf6 =0
doL oL . . j_

%g_w_o — gsinf+ Zcosf+ LO =0

(1.287)
Come ovviamente ci aspettiamo.
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