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Preface

Topological invariants are usually defined as quantities which are preserved under home-

omorphism transformations. This means that they are mathematical objects which do

not depend on the local form of the spacetime, but only relies on its global structure, the

topology. They are largely used in all physics branches, from gravitation up to complex

systems, due to their capability of reducing the complexity of the dynamics and leading to

exact solutions. This book is aimed at describing their applications in different contexts,

such as modified theories of gravity, standard electromagnetism and biological systems.

Regarding the former, it is well known that Einstein General Relativity is still considered

the best accepted theory describing the gravitational interaction, but several shortcom-

ings arise in the so called strong regimes. As a matter of facts, despite its success, General

Relativity presents many unsolved issues and puzzles at any scales. Such problems can be

partially solved by modified theories of gravity, which aim to extend the Einstein-Hilbert

action to a more general one including other geometric terms. These latter can mimick

the role of Dark Energy and Dark Matter, providing an effective energy-momentum tensor

of the gravitational field. Among all the possible modifications of the starting actions,

in this book modifications related to topological invariants are considered. Modified the-

ories of gravity, often lead to higher-order field equations which cannot be analytically

solved even in cosmological backgrounds. In this framework, reducing the order of the

field equations, topological invariants can be particularly useful in order to find out exact

solutions, well describing the today observations at the large scales. Moreover, as pointed

out in the second part of the book, topological invariants can be used to construct gauge-

invariant Lagrangians, which allow to fix the high-energy issues arising in the attempt

of merging the formalism of Quantum Mechanics with that of General Relativity. In the

second part of this work we will focus on a modified theory of gravity including a function

of the Gauss–Bonnet topological surface term, showing that suitable field equations allow

to find out exact solutions in a cosmological and in a spherically symmetric background.
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The starting action is selected by means of the Noether Symmetry approach, a selection

criterion aimed at finding theories containing symmetries. Modified f(G) gravity, with

G being the Gauss–Bonnet term, is studied in a D-dimensional spacetime, where higher-

order cosmological and black holes solutions are provided. The Gauss–Bonnet scalar is,

then, coupled to a dynamical scalar field, in order to make a comparison with the stan-

dard scalar-tensor theory of gravity. In all cases, General Relativity can be recovered as

a particular limit.

In the third part of the book, we consider the Chern–Simons theory in odd dimensions. It

is based on the Chern-Simons forms, whose exterior derivatives provide topological surface

terms. This property make the theory quasi-Gauge invariants, namely invariant under

gauge transformations up to a boundary term. We show that from very general and basic

theories such as classical and quantum theories of gravity, Chern–Simons theory can lead

to far beyond closely related fields to push concepts and applications to complex systems,

there including the interactions between biomolecules, such as nucleic acids and proteins.

Indeed, after providing cosmological and spherically symmetric solutions in D dimensions,

we show that the theory can be also applied to biological systems. While applications to

our Universe seems to be a straightforward consequence for a testbed of the theory itself,

the use of Chern–Simons theory in understanding complex systems might look unusual

and non-conventional.

Biological systems often exhibit complicated topological structures, such as nucleic acids

or proteins, since different parts of the same molecule may assume a complicated three-

dimensional shape (tertiary structure). When two or more tertiary structures interact, the

resulting system fold into a quaternary structure, whose schematization represents one of

the most controversial and discussed branch of science, due to the important implications

in biology, microbiology, medicine etc. As an example, from the spatial configuration

assumed by the DNA, it is possible to infer the place in which genomic mutations might

occur, as well as the difference among phenotypes.

The link between Chern–Simons theories and the dynamics/interactions of complex biomolecules
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is the topological nature of the former which can be essential to describe the complicated

physico-chemical and biological behavior of the latter, very much relying on their topology.

Basically, the main idea is to describe the DNA curvature by using the same formalism

adopted for the spacetime, treating the interactions among biological systems as driven

by the same general principles that govern the gravitational interaction.

By merging the schematization approach lying behind the Chern–Simons theory with

the more conventional ones coming from bioinformatic, it is possible to implement the

nowadays knowledge of the biological scenario. In particular, the deterministic aspect

of the former can be combined with bioinformatic techniques, which treat the biological

issues from a stochastic point of view.

As a final remark, in light of the above mentioned applications, it is worth pointing out

that this book can be understood as a first step towards the development of the so called

"Topological Invariant Approach". More precisely, we aim to show that topological invari-

ants can be considered in the framework of different fields to describe the corresponding

dynamics, ranging from cosmology, black holes, up to complex systems. Throughout the

history of physics it is possible to identify several approaches, developed to solve specific

issues, but which subsequently spread out in different fields, because of their general valid-

ity. This is the case e.g. of symmetries, which nowadays play a fundamental role in almost

all branches of science. Similarly, though topological invariants arose with the purpose of

addressing evidences provided by the gravitational interaction, the same structure can be

also applied to apparently unrelated fields. In particular, the vision on which topology,

geometry and topological invariants are based on, is the key point of the approach. In

this way, once addressing a configuration space to the given system, the evolution can be

described under the same formalism as the space-time, so that the research for topologi-

cal and geometrical features of the configuration space can provide information about the

related dynamics. Therefore, the link with the gravitational interaction appears natural

and straightforward, and the dynamical behavior of galaxies, stars and planets can be

addressed to other different models.
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To conclude, this book is organized as follows: in Chaps. 1 and 2 successes and shortcom-

ings of General Relativity are outlined, and the main classes of modified theories of gravity

are discussed. In Chaps. 3-8, different theories of gravity involving the Gauss–Bonnet

scalar are studied, as well as scalar-tensor theories and non-local theories. Specifically,

in Chap. 3, cosmological aspects such as energy conditions and slow–roll inflation are

discussed in the framework of f(G) gravity. The form of the starting action is selected by

symmetry considerations, namely using the Noether symmetry approach. The prescrip-

tion pursued to find out analytic cosmological solutions by Noether’s approach is based

on Ref. [47], while applications to early stages of the Universe and energy conditions on

Ref. [146]. In Chap. 5 we find out exact solutions for f(G) gravity in a spherically sym-

metric background, following Ref. [155]. In Chap. 6 we compare two classes of non-local

integral kernel theories of Gauss–Bonnet gravity, outlining the main results of Ref. [158].

In Chap. 7 the equivalence between metric and affine scalar-tensor theories is discussed,

remarking the differences and the common features. In particular, a function of the scalar

field f(φ) is coupled to the scalar curvature (Sec. 7.1), to the torsion scalar (Sec. 7.2) and

to the Gauss–Bonnet scalar (Sec. 7.3). For further details see Ref. [162]. The third part

is devoted to basic foundations and applications of Chern–Simons theory. After outlining

its main aspects in Chap. 9, in Chaps. 10 and 11 Chern–Simons gravity is applied to

cosmology and spherical symmetry [177]. Finally, in Chaps 12 and 13 the applications

to electromagnetism and biological system is respectively considered [225, 224]. With

regards to this latter, in Sec. 13.1.1 the theory is applied to KRAS human gene, in order

to study the effect of induced mutations to selected sequences. In Sec. 13.1.2 the same

analysis is performed to SARS-COV 2 virus.

Keywords: Topological Invariants; Modified Theories of Gravity; Complex Systems.
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"I managed to get a quick PhD

- though when I got it I knew

almost nothing about physics.

But I did learn one big thing:

that no one knows everything,

and you don’t have to."

S. Weinberg
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We will set h̄ = c = 8πG = 1 unless otherwise indicated and we will use the following

notation:

1. For the indexes:

• Greek indexes {α, β, γ... = 0,1,2,3} → label the four dimensional curved space-

time coordinates

• Latin indexes {a, b, c... = 0,1,2,3} → label the four dimensional flat space-time

coordinates

• Middle indexes {i, j, k... = 1,2,3} → label the spatial coordinates

• Symmetrization over the indexes will be indicated by the curly bracket, while

anti-symmetrization by the square bracket

2. Let Aµ be a generic four-vector, we adopt the following:

• DνAµ = Aµ;ν is the covariant derivative in terms of the Levi-Civita connection

• ∂νAµ = Aµ,ν is the standard partial derivative

• Christoffel connection will be indicated equivalently by Γ
α
βγ or gασ{σ, βγ}

• ∇νAµ → is the covariant derivative in terms of any connection except for the

Levi-Civita connection.

3. We use the symbol L for Lagrangian density, while the Lagrangian will be denoted

by L.

4. For the Einstein tensor we use the notation Gµν = Rµν − 1
2
gµνR

5. The derivative with respect to the variable will be indicated by the subscript variable

or sometimes by the subscript variable in the partial derivative
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6. � stands for the four-dimensional D’Alembert operator � = gµν∇µ∇ν

7. X represents the generator of a certain symmetry, while X = X + η̇i∂q̇i is the

Noether vector

The metric signature adopted is (+, −, −, −).

We will introduce less important symbols during construction.
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Part I

INTRODUCTION AND

PRELIMINARIES
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1

Overview of General Relativity:

Successes and Shortcomings

1 The Hilbert-Einstein action, linear in the Ricci curvature scalar R, gives rise to the field

equations of General Relativity (GR), which is the theory of gravity capable of fitting

a huge amount of phenomena ranging from gravitational waves (GWs), astrophysical

compact objects, black holes up to cosmology. At the astrophysical scales, GR soon

obtained a great success after the observations of the light deflection, followed by the

Radar Echo Delay and the exact estimation of the precession of the perihelion of Mercury

in its orbit around the sun. The above mentioned successes come from the application of

the theory to a spherically symmetric space-time of the form

ds2 = P (r, t)2dt2 − Q(r, t)2dr2 − r2dΩ
2, (1.1)

with Ω being the two-sphere defined as dΩ
2 ≡ dθ2 + sin2 θdφ2. Once replacing the

interval (1.1) in the Einstein field equations, it turns out that the only solution is

ds2 =
(

1 −
rS

r

)

dt2 −
(

1 −
rS

r

)−1

dr2 − r2(sin2θdφ2 + dθ2), (1.2)

which is static and contains two intrinsic singularities. One of them is an intrinsic diver-

gence occurring for r = 0, due to the curvature generated by the compact object, at the

1In this Chapter we consider the Newton constant GN , subsequently set to 1/8π.
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1. Overview of General Relativity: Successes and Shortcomings

center of which any information is missed. The other singularity occurs when the radius

is equal to the so called "Schwarzschild radius" rS , defined as

rS = 2GNM , (1.3)

with GN being the Newton coupling constant and M the mass of the compact object.

It can be shown that this latter singularity is coordinate-dependent, and can be deleted

by means of an appropriate transformation (Kruskal-Szekeres coordinates). The plane

r = rS is the "Event Horizon" and can be interpreted as the boundary beyond which

events cannot affect an observer. The recent black hole image at the center of M87 galaxy,

showed that these theoretical predictions are consistent with experimental observations

[1].

The application of GR to homogeneous and isotropic space-times led to better understand

the cosmological evolution crossed by the Universe, from the Big Bang to the Dust Matter

Dominated Era. Using a cosmological perfect fluid with equation of state p = γρ, the

Einstein field equations provide the solution

a

a0

=
(

t

t0

)

2

3(γ+1)
ρ(t) =

[

6πGN (1 + γ2)t2
]−1

, (1.4)

where a spatially–flat Friedmann–Lemaitre–Robertson–Walker (FLRW) universe of the

form

ds2 = dt2 − a(t)2[dx2

1 + dx2

2 + dx2

3], (1.5)

must be considered to obtain Eq. (1.4). Depending on the value of γ, three different

epochs can be identified:

• γ = 1

3
→ Radiation fluids

• γ = 1 → Stiff matter fluids

• γ = 0 → Dust matter fluids

Experimental observations confirm that the evolution of the Universe went through dif-
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1. Overview of General Relativity: Successes and Shortcomings

ferent epochs, predicted by GR cosmology with high precision.

At the astrophysical scales, linearized Einstein field equations show that GR admits the

presence of GWs propagating outward from their source at the speed of light. Specifically,

considering a small perturbation hµν of the Minkowski flat metric tensor

gµν = ηµν + hµν , |hµν | ≪ 1 , (1.6)

a D’Alembert equation of the form

�hµ
ν = −2

(

T µ
ν −

1

2
δµ

ν T
)

, (1.7)

2 can be obtained from the field equations, where T is the trace of the energy–momentum

tensor T µ
ν . In vacuum the above equation describes propagating waves at the speed of

light. Using the TT gauge condition, the general solution reads:

hµν = e+µνh+ + e×

µνh× ,

e+µν =





















0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0





















e×

µν =





















0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0





















. (1.8)

According to the standard model, GWs in GR are described by spin-2 massless particles,

with spin orientated in the same direction of motion.

For many years, GWs represented only a theoretical solution of field equations. In 2015,

the Laser Interferometer Gravitational-Wave Observatory (LIGO) revealed a GW event

(GW150914) and opened a new window in astrophysics and cosmology [2].

The GW production occurred during the merging of two black holes with masses of 29

M⊙ and 36 M⊙. The merging process produced a black hole of 62 M⊙. The remaining (3

M⊙) mass-energy was released in form of gravitational radiation. The observation gave a

2The operator � is the D’Alembert operator defined as DµDµ, with Dµ being the covariant derivative
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1. Overview of General Relativity: Successes and Shortcomings

double result: confirmed the existence of GWs and of stellar mass black holes.

After this first detection, several other events have been observed thanks to the LIGO-

VIRGO collaboration, and further detections are expected in the forthcoming years.

When the cosmological constant is considered and dominating, the vacuum solution of

the Einstein field equations in a FLRW space-time provides a scale factor of the form

a(t) = a0e

√

Λ

3
t
, (1.9)

denoting an exponentially accelerated universe.

The cosmological constant was introduced to explain the today observed accelerated cos-

mic expansion, physically interpreted as a form of energy which should represent the 68%

of the Universe, called Dark Energy. The today accepted formulation of gravity, includes

the cosmological constant as a fundamental component in the Einstein field equations,

which therefore reads as:

Rµν −
1

2
gµνR + Λgµν = 8πGN Tµν , (1.10)

where Rµν is the Ricci tensor, R the Ricci scalar, gµν the metric tensor and Tµν the

energy–momentum tensor of matter fields.

Those mentioned above are only a few part of the results gained by GR during more

than one hundred years. In spite of all this, it also provided some results which disagree

with experiments. For instance GR is not able to predict the right correlation between

mass and radius of compact objects. Another example is given by the speed of the farest

stars orbiting around the center of a given galaxy, which is experimentally lower than

theoretically expected (see galaxy rotation curve problem [3]). To theoretically fix this

issue, the missing matter was addressed to a fluid with zero pressure, called Dark Matter.

It is supposed to represent the 26.8% of the Universe but has never been observed directly.

5
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Figure 1: Energy–matter content in the Universe.

As the accelerated expansion cannot be predicted by GR without invoking the presence of

Dark Energy, the galaxy rotation curve cannot be fitted without Dark Matter; however,

even considering the cosmological constant, at the quantum level there is a discrepancy of

120 order of magnitude between the theoretically predicted value and the experimentally

calculated one.

On the other hand, the "local" formulation of GR seems completely in disagreement with

the intrinsic "non-locality" of quantum mechanics.

Quantum mechanics was the most revolutionary theory of the last century, which opened

the doors to a completely new vision of physics at the high energy. The determinism of

classical mechanics was replaced by a probabilistic interpretation of small-scale phenom-

ena, which seemed to be the only way to fit all the experimental results. As we gained

a theory capable of describing almost all the evidences provided by the quantum world,

we lost the capability to exactly predict the time evolution of the system. Soon after,

Quantum Field Theory (QFT) arose with the purpose to describe all the fundamental

interactions under the same standard. It was soon clear that this prescription could not

6



1. Overview of General Relativity: Successes and Shortcomings

be applied to the gravitational interaction. Indeed, as quantum mechanics is probabilistic

by nature, gravity is in turn described by Einstein’s GR, where non-local interactions are

not allowed. So far, a theory capable of describing both the large-scale structure and the

Ultraviolet (UV) scale results is still missing. Moreover, neither QFT nor GR hold at

the Planck scale, where a new physics is probably needed. On the one hand, despite all

the experimental confirmations of quantum mechanics, we still miss its deep meaning; on

the other hand, although GR is mathematically consistent and well developed, it presents

some inconsistencies even at the large-scales. Any attempt to merge the formalism of

GR with that of QFT have failed. Even though QFT in curved space-time addressed

several evidences provided by the small-scales observations (such as Hawking Radiation,

Unruh effect or cosmic inflation) it suffers several shortcomings. Indeed, it turns out

that GR can be renormalized up to the second loop level [4], which means that incurable

divergences arise once adapting the same scheme as QFT to gravity. In addiction, unlike

the other fundamental interactions, GR cannot be treated under a Yang-Mills formalism,

due to the lack of a Hilbert space and a probabilistic interpretation of the wave function.

For these reasons, a coherent and self-consistent theory of quantum gravity is one of the

most studied topic nowadays [5, 6, 7, 8, 9, 10, 11]. In the last few years, the quantum

formalism was adapted to cosmology, where the dynamics can be reduced considering a

minisuperspace of the variables. It represents a "toy model" which does not claim to be

complete, but yields several important results in the understanding of the early-stage of

our Universe [12, 13, 14, 15, 16].
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2

Modified Theories of Gravity

Before introducing the main classes of modified theories of gravity it is useful to overview

the state of art of GR modifications and the reasons why extending gravity. As mentioned

above, while the electroweak and the strong interaction are Yang-Mills gauge theories, GR

is invariant under diffeomorphism transformations, which involve coordinates instead of

fields. Moreover, according to the geometric description of gravity, in view of a possible

quantum scheme, the space-time metric should represent both a dynamical field and the

background; this is not the case of other interactions, whose treatment is simplified by

the assumption that the space-time is supposed to be flat. In 1988 Lasenby, Doran and

Gull proposed to deal with the flat tangent space of the Riemannian manifold, treating

GR as a gauge theory with respect to the local Lorentz group [17]; in order to pass from

the curved to the flat space-time, a mathematical tool called tetrad fields is necessary,

which in turn becomes the fundamental dynamical field. The formalism adopted is the

so called Einstein–Cartan formalism [18, 19, 20, 21], where the connection is generally

independent of the metric and the two-form curvature must be found through Cartan’s

structure equations [18, 22]. This implies that curvature can be used along with torsion

to simultaneously label the space-time, so that the theory reduces to standard GR as

soon as anti-symmetric part of the connection vanishes. This approach is not aimed at

solving all the problems occurring in GR at the small scales regime, since even under

an Einstein-Cartan formalism, several shortcomings are still suffered. As an example,

neglecting the asymptotic safety scenario [23, 24, 25, 26], the theory can be renormalized

only up to the one-loop level. At the large scales, early and late-time Universe acceleration

8
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cannot be predicted without introducing Dark Energy, as well as the galaxy rotation curve

cannot be fitted without Dark Matter. In this framework, modified theories of gravity

arose with the purpose of solving such shortcomings, by taking into account alternatives

to the Hilbert–Einstein action. In the first instance, they can be distinguished in two

main categories: purely metric theories and metric-affine theories. The former (which

will be the main focus of this book) admits the metric tensor as the only fundamental

filed. The latter disentangles the contribution of the metric from the affine connection,

such that no relations between Γ
α
µν and gµν occur. This prescription is usually called

"Palatini formalism" (see [27, 28, 29, 30] for basic foundations and applications). One of

the most famous extensions of GR is the f(R) gravity, which introduces into the action

a function of the scalar curvature. Similarly, the f(T ) gravity considers a function of

the so called torsion scalar into the action. However, the Hilbert–Einstein Lagrangian

can be extended in several ways, such as introducing the coupling between geometry and

scalar fields, higher-than-fourth order terms involving the D’Alembert operator �
n, or

higher-order curvature invariants (as well as RµνRµν or RµνpσRµνpσ). All these theories

can be treated either with respect to the purely metric or to the Palatini formalism. In

this book, we assume the affine connection to be linked to the metric tensor, such that

the corresponding field equation solutions can be uniquely determined by knowing the

space-time line element. Specifically, we will focus on those modified theories of gravity

somehow related to topological invariants, such us modified Gauss–Bonnet gravity and

Chern–Simons gravity. An exhaustive treatment regarding other modified theories of

gravity can be found in [31]. For specific discussions see e.g. [32, 33, 34, 35, 36] for

f(R) gravity, [37, 38, 39, 40, 41, 42] for f(T ) gravity, [43, 44, 45, 46] for scalar-tensor

gravity, [47, 48, 49] for actions depending on second-order curvature scalars. Lagrangians

of most modified theories of gravity contain unknown functions which cannot be directly

constrained by experimental observations. Therefore, it comes natural wondering how to

select the shape of the function among all possible choices.

One possible remedy, largely considered in the literature (see App. B), is to use a selection
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criterion aimed at finding actions containing symmetries. It is called Noether Symmetry

Approach and will be particularly used in the second part of this work to select modified

Gauss–Bonnet theories with symmetries. Specifically, as better pointed out in App. B,

Noether theorem can be used as an approach to reduce the dynamics and find out exact

analytic solutions of the field equations in modified gravity.

2.1 Brief Introduction on Modified Theories of Grav-

ity

Modified theories of gravity, in some context, are capable of fixing GR inconsistencies, at

infrared (IR) and UV scales. GR can be modified in several ways, depending on the scale

and on the theoretical issues considered. As a matter of fact, GR does not account for the

most general classical theory of gravity, but it relies on several assumptions. Most of them

are motivated neither by experimental observations nor by strong theoretical reasons, but

was introduced with the aim to construct a suitable theory leading to analytic solutions. It

is beyond any discussion that the description of the gravitational interaction through the

space-time geometry was perhaps the greatest intuition of XX century, and the consequent

approval marked a turning point in the physical comprehension of phenomena. However,

in order to gain such a predictive power and to obtain analytic results, many hypothesis

was adopted; in what follows we analyze the main assumptions lying behind GR.

• Equivalence Principle and Symmetric Connection.

Let us first consider the assumption of symmetric connection, based on the requirement

for the validity of the Equivalence Principle. The Weak Equivalence Principle affirms

that there is no difference between gravitational field and accelerated systems, so that

a free falling reference frame is completely equivalent to a system with no gravitational

field. In other words, according to the weak Equivalence Principle, it is always possible

to locally link the curved space-time to a flat tangent Minkowski space-time. The equiva-

lence between the gravitational and the intertial mass is then automatically implied, and

10



2. Modified Theories of Gravity

nowadays several experiments confirm such equivalence with a precision of 1 part over

1014. Despite this, it is just an assumption motivated by macroscopic observations, which

surely holds at large scales, though it is still unclear whether it keeps being valid at Planck

scales. In order to treat the gravitational interaction under the same standard as the other

fundamental interactions and to construct a coherent theory of quantum gravity, such a

precision of 10−14 makes a crucial difference, since admits the possibility that at higher

scales the ratio mg/mI might pull rapidly away from 1.

As usual in GR, the form of the Christoffel connection can be found by imposing the

"metricity condition" Dαgµν = 0, by means of which the following identity

Dαgµν + Dνgαµ − Dµgνα = 0, (2.1)

must hold. Considering the definition of the covariant derivative and assuming Γ
α
[µν] = 0,

it turns out that the only possible connection in GR is the Levi–Civita connection, that

is1:

Γ̂
α
µν =

1

2
gαp (∂µgpν + ∂νgµp − ∂pgµν) . (2.2)

However, once the metricity condition and the hypothesis of symmetric connection are

relaxed, the same computation leads to a more general form of Γ
α
µν , comprehending other

non-trivial terms. It reads [50, 51, 52]:

Γ
α
µν = Γ̂

α
µν +

1

2
gαλ

(

Tµλν + Tνλµ + Tλµν

)

+
1

2
gαλ

(

−Qµνλ − Qνµλ + Qλµν

)

, (2.3)

where Γ̂
α
µν denotes the Levi-Civita connection and Qβµν , T α

µν are rank-three tensors

defined as:

Qβµν = ∇βgµν T α
µν = 2Γ

α
[µν]. (2.4)

The formalism in which the metric is disentangled from the connection, so that this latter

is no longer "metric compatible", is known as Einstein-Cartan-Sciama-Kibble formalism.

1Hereafter in this chapter, the Levi-Civita connection will be denoted by a hat on the top.
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