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Prefazione

Questo libro nasce dall’esperienza nei corsi di laboratorio di fisica del primo anno tenuti
dagli autori per i loro compiti didattici. Il testo verte sulle problematiche della misura
delle grandezze fisiche, delle tecniche di analisi dei dati sperimentali e contiene esperienze di
meccanica e termodinamica. Dunque si adatta ai programmi del primo anno di studio per gli
studenti del corso di laurea in Fisica, ed eventualmente per i corsi di studio in Matematica,
Chimica e Ingegneria se prevedono attivita di laboratorio di fisica.

Rispetto a una prima esperienza editoriale di qualche anno addietro’, nella quale aveva-
mo privilegiato 'impatto delle esperienze sulla fenomenologia della fisica generale, ’'opera
affronta in maniera piu sistematica le prime due tematiche relative ai fondamenti della tec-
nica sperimentale e all’analisi statistica dei dati. Queste parti sono state significativamente
ampliate e forniscono una trattazione esauriente e sufficientemente approfondita per una
laurea di primo livello.

Nella parte riguardante la misura delle grandezze, sviluppata nei primi tre capitoli, oltre
alla problematica canonica riguardante le grandezze, gli strumenti e le incertezze, abbiamo
presentato anche una serie di argomenti che generalmente vengono affrontati rapidamente,
confidando sul loro carattere intuitivo, senza rendere merito alla loro rilevanza concettuale;
alcuni argomenti sono pit avanzati, si incontrano raramente nella bibliografia di base (e non
solo), ma sono stati inseriti come stimolo per ulteriori approfondimenti (e.g. la trattazione
formale dell’analisi dimensionale). La prima parte, sulla misura delle grandezze fisiche, si
conclude con una breve introduzione ai principali metodi di analisi dei dati. Essendo svolta
prima della trattazione completa delle tecniche statistiche, ma necessaria per permettere
agli studenti di iniziare I'attivita in laboratorio, la presentazione si fonda maggiormente sul
carattere intuitivo/qualitativo dei risultati, cercando di farne emergere il significato fisico
sostanziale.

La parte riguardante ’analisi statistica dei dati sperimentali si articola invece su otto
capitoli e risulta piuttosto completa, probabilmente sovradimensionata per un corso del
primo anno, ma ben adattata per accompagnare lo studente lungo tutto il corso di studi di
primo livello. Lo sviluppo segue un ordine abbastanza consolidato: si parte dai concetti di
probabilita e delle variabili aleatorie, successivamente si affronta il problema dell’inferenza
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statistica con lo studio sperimentale delle distribuzioni, la stima dei parametri e dei loro
intervalli di variabilita, 1’analisi della regressione e il test di ipotesi. Come accennato, gli
argomenti esposti sono molteplici, in alcuni casi piuttosto originali (e.g. l'origine della
distribuzione di Gauss assente da quasi tutta la bibliografia di base!) e il livello della
trattazione non ¢ sempre elementare, pertanto per un corso del primo anno si dovranno
effettuare delle scelte mirate. Tuttavia abbiamo privilegiato la completezza per permettere
agli studenti di avere un riferimento generale e stimolare anche la curiosita intellettiva di
quelli piu intraprendenti. L’impostazione & chiaramente quella della fisica sperimentale,
tuttavia sono presenti numerosi riferimenti ad altri campi delle scienze e anche a specifiche
tematiche di tipo statistico/matematico. In effetti uno dei problemi maggiori in questo
settore, e quello della diversita di linguaggio fra le varie comunita scientifiche su argomenti
molto simili nella sostanza; pensiamo che sia un bene abituare da subito gli studenti a questa
forma di apertura mentale.

In un testo di laboratorio di fisica non poteva mancare una parte sperimentale(!) che e
sviluppata negli ultimi quattro capitoli delle terza parte. I primi tre riportano delle espe-
rienze molto classiche su argomenti di meccanica e termodinamica, comprese quelle che non
possono mancare, come per esempio: la caduta del grave, il pendolo e quelle di termome-
tria/calorimetria. Alcune esperienze, invece, sono particolarmente adatte per evidenziare
sperimentalmente e approfondire i concetti sviluppati nei corsi fenomenologici, fra queste
sono particolarmente rappresentative quelle sulle oscillazioni forzate, sulle onde, sulla diffu-
sione termica e sul motore termico. Alcuni di questi apparati non sono facilmente replicabili
in gran numero per delle classi di laboratorio, mentre si prestano molto bene per esperien-
ze dimostrative/quantitative molto spettacolari da svolgere in aula. Questi argomenti sono
stati raggruppati in un unico capitolo disponibile on line.

La parte fenomenologica di fisica & stata limitata al massimo, rimandando sistematica-
mente alla bibliografia e, per quanto possibile, si & cercato di presentare 'attivita di labo-
ratorio come la scoperta di leggi fisiche piuttosto che una semplice verifica delle previsioni
teoriche. Dal punto di vista strumentale abbiamo cercato di usare della strumentazione rela-
tivamente avanzata (e.g sensori di vario tipo interfacciati con computer). In particolare sono
diventati accessibili, a costi relativamente contenuti, numerosi strumenti che permettono di
effettuare misure di laboratorio in tempo reale. L’uso di questa strumentazione consente,
generalmente, un significativo miglioramento della sensibilita sperimentale con un duplice
vantaggio. Da un lato si manifestano in modo evidente gli effetti delle fluttuazioni casuali
ed ¢ possibile applicare le tecniche di analisi statistica. Dall’altro si osservano fenomeni
che corrispondono a effetti generalmente trascurati nelle schematizzazioni elementari e che
richiedono, per comprenderli, interessanti approfondimenti (per esempio l'effetto della mas-
sa delle molle nello studio dei moti armonici o I’attrito volvente nel rotolamento sul piano
inclinato). Questa interconnessione fra miglioramento della sensibilita sperimentale e nuova
fenomenologia ¢ interessante perché costituisce una caratteristica della ricerca fondamentale,
un esempio storicamente molto importante di questo tipo e stata la scoperta della radiazione
di fondo cosmico avvenuta grazie al miglioramento della qualita delle antenne ricettive.



Per rimarcarne il carattere formativo, le esperienze sono piuttosto articolate e si rico-
noscono sempre tutti i diversi passi della fisica sperimentale: concezione dell’esperimento,
preparazione dell’apparato, presa dati, analisi delle misure e risultati. Questo ¢ preferibile
alla proposizione di esperimenti che, seppur molto riusciti perché ottimizzati dall’'uso di ma-
teriale molto specializzato, risultano delle scatola nere. 1 sistemi realizzati sono, in linea di
principio, perfettamente spiegabili per gli studenti del primo anno con il minimo bagaglio
di conoscenze in fisica delle scuole superiori; inoltre la gran parte di essi si puo realizzare
anche con strumentazione meno sofisticata di quella proposta, senza nulla togliere al valore
concettuale dell’esperimento.

Riguardo la bibliografia abbiamo preferito inserire i riferimenti direttamente nel corpo
del testo invece di un elenco finale scorrelato dagli argomenti; questa scelta ricalca quella
della letteratura scientifica e 'idea ¢ quella di stimolare puntualmente la curiosita del let-
tore. A parte le opere di carattere molto generale (per gli argomenti di analisi matematica,
di algebra lineare e della fenomenologia della fisica) che sono indicative, le fonti citate, pur
riflettendo i gusti degli autori, sono molto varie e comprendono testi che seguono diverse
impostazioni didattiche e culturali, con lo scopo di farne scoprire le differenze e i rispettivi
pregi. Naturalmente non potevano mancare alcuni classici fondamentali, principalmente per
la parte relativa all’analisi statistica dei dati, che si rivelano ancora, a distanza di decenni,
delle fonti inesauribili di informazione e di approfondimento. I riferimenti alla rete informati-
ca sono limitati poiché, in generale, gli studenti gia dominano facilmente questa interessante
fonte di informazione; quello che ci interessa suggerire e la scoperta dei grandi testi, anche
a costo di uno sforzo intellettivo supplementare.

Per le notazioni matematiche abbiamo scelto quelle attualmente piu diffuse in letteratura,
mentre per la rappresentazione numerica usiamo la virgola per separare la parte intera da
quella decimale. Ovviamente, data la natura del testo, le unita di misura seguite sono quelle
del Sistema Internazionale tranne nelle rare occasioni dove esiste una motivata esigenza
didattica (e.g. la caloria).

Un ringraziamento ai numerosi colleghi per 1’aiuto in laboratorio, le discussioni e i sug-
gerimenti; infine un ringraziamento particolare ai tecnici dei laboratori didattici del Diparti-
mento di Fisica dell’Universita Federico 11 di Napoli per la disponibilita dimostrata in questi
anni.
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Capitolo 1

Le grandezze fisiche

In questo primo capitolo affronteremo la tematica fondamentale delle grandezze fisiche. Do-
po la loro definizione operativa, discuteremo il concetto delle loro dimensioni e della loro
rappresentazione quantitativa all’interno di un sistema di unta di misura.
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1.1 Le grandezze fisiche e loro proprieta elementari

Una grandezza fisica rappresenta una proprieta di un fenomeno o di un oggetto fisico che
puo essere messa in evidenza e alla quale, tramite la procedura di misura con uno strumento
che discuteremo in dettaglio nel seguito, si puo associare una determinazione quantitativa,
tipicamente un numero reale: il cosiddetto risultato della misura. L’esempio forse piu fa-
miliare di grandezza fisica & quello della distanza fra due oggetti che si pud misurare con
un metro, almeno nelle applicazioni della vita quotidiana. Un altro esempio molto familiare
e costituito dell’intervallo di tempo trascorso fra due eventi (durata) e in questo caso lo
strumento ¢ un orologio.

Gli esempi citati di distanza e di intervallo di tempo sono fra i pit importanti perché
da queste grandezze, come vedremo, se ne possono costruire molte altre come per esempio
la velocita, ’accelerazione, ecc.. Inoltre la loro interpretazione intuitiva coincide con la
loro definizione, almeno nell’ambito della meccanica classica. Ogni grandezza ha le sue
peculiarita, e spesso la sua interpretazione corretta non ¢ sempre cosl immediata. Per
esempio esistono:

e grandezze molto intuitive che si misurano accuratamente, ma la cui definizione corretta
presenta non poche difficolta concettuali. Questo € il caso della massa, a tutti appa-
rentemente ben nota, la cui definizione esauriente richiede i principi delle piu avanzate
teorie fisiche come la Relativita Generale;

e grandezze, sempre molto intuitive e ben definibili operativamente, che sono difficili
da definire anche a un livello molto elementare di speculazione. L’esempio pitl noto
e forse quello della temperatura, cosi familiare nell’esperienza, che per essere defini-
ta, senza riferimento al tipo di termometro usato, richiede il secondo principio della
termodinamica o la meccanica statistica (!);

e grandezze poco intuitive, spesso derivate da altre, che permettono di evidenziare e
descrivere meglio alcune caratteristiche dei fenomeni fisici. Un esempio notevole &
quello della quantita di moto con la quale si ottiene la formulazione pit completa delle
leggi della meccanica rispetto all’uso della grandezza forza, sicuramente piu intuitiva;

e grandezze apparentemente ausiliarie che, definite in alcuni fenomeni per semplificarne
la descrizione, si prestano successivamente a generalizzazioni che superano il semplice
ambito della loro definizione. Gli esempi piu importanti sono quelli dell’energia e del
momento angolare che, introdotti nella meccanica, si ritrovano in tutti i campi della
fisica fino al livello microscopico fondamentale.

1.1.1 Il metodo sperimentale e le leggi fisiche

La fisica ¢ la scienza che studia e descrive i fenomeni naturali, una delle sue caratteristiche
fondamentali e rappresentata dal carattere obbiettivo di questa conoscenza, ovvero indipen-
dente per quanto possibile dalle persone che la acquisiscono. Conseguentemente i metodi di
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indagine devono possedere questo carattere di oggettivita!. Il modo per realizzare al meglio
queste condizioni ¢ quello di fornire, sulla base di osservazioni sperimentali, una descrizione
quantitativa dei fenomeni. Le osservazioni si effettuano tramite le misure, che forniscono
dei numeri che vengono elaborati, analizzati e successivamente inquadrate nell’ambito di
modelli o teorie fisiche.

Per organizzare logicamente e quantitativamente le osservazioni e le misure si ricorre alle
leggi fisiche. Una legge € una relazione che collega le grandezze fisiche coinvolte in un partico-
lare fenomeno. In generale essa viene rappresentata sotto forma di una relazione matematica
fra le grandezze. La metodologia di analisi della fisica ¢ stata tracciata da Galileo che per
primo adottd in modo sistematico il metodo sperimentale®. In questo approccio la validita
di una legge non dipende dal suo grado di intuizione, dalla sua eleganza formale, dal rigore
logico per la sua deduzione, ecc... Il criterio di giudizio finale & rappresentato dall’accordo
delle previsioni con gli esperimenti che misurano le grandezze coinvolte nel fenomeno?®. Nella
storia della fisica, contrariamente a quanto viene talvolta sostenuto, le grandi rivoluzioni non
sono mai nate da speculazioni astratte, il vero motore del progresso della conoscenza sono
stati sempre gli esperimenti. Tutte le speculazioni, per quanto sorprendenti, sono sempre
scaturite da risultati sperimentali il cui risultato ha profondamente messo in crisi il modo
di concepire i fenomeni naturali.

Una conseguenza del metodo sperimentale ¢ ’assunto che ogni qualvolta si scrive una
legge fra grandezze fisiche ognuna di esse puo, almeno in linea di principio, essere misurata
direttamente e dunque vi si puo associare una quantita numerica definita. Da questa carat-
teristica segue che, nel cercare di formulare le leggi fisiche, si proceda per approssimazioni
successive cercando di separare i diversi contributi al fenomeno e considerando in un primo
momento soltanto quelli maggiori. Spesso il problema viene affrontato schematizzandolo e
realizzandolo in forma semplificata per capirne gli aspetti piu significativi. A volte questa
operazione richiede un certo grado di astrazione e si finiscono per studiare fenomeni fisici che
non si osservano direttamente in natura. Due esempi abbastanza rappresentativi di questo
modo di procedere sono quelli dello studio della caduta libera e del piano inclinato liscio
(due processi, a stretto rigore, inesistenti!). Nell’ambito della fisica microscopica questo ap-
proccio e ancora piu esaltato a causa delle enormi difficolta matematiche nella risoluzione
delle equazioni. Scherzosamente potremo affermare che il modo di procedere assomiglia a
quello di un uwomo che, avendo perso un mazzo di chiavi per strada, le cerca sotto a un
lampione perché li c’é la luce!

Dalle osservazioni appena enunciate dovrebbe risultare immediato che le leggi fisiche

LAlla base vi & lipotesi che i fenomeni naturali sono indipendenti, a parita di tutte le altre condizioni,
dal luogo e dal momento in cui vengono studiati.

2Questa ¢ stata la vera grande rivoluzione Galileana ben oltre la nota e spesso citata a sproposito adesione
al sistema Copernicano.

3Naturalmente questo non significa che nelle fasi di elaborazione e ricerca delle leggi non si possa fare
ricorso ad alcuni dei criteri citati. Il famigerato senso fisico € forse un complesso, abbastanza poco defini-
bile, di queste attitudini mentali che finisce talvolta per rendere la fisica una materia poco incline a rigide
schematizzazioni, come ben sanno gli studenti di Matematica abituati a ben altro rigore formale!
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possono non avere una validita universale; questo non significa che sono sbagliate ma che
il loro dominio di applicazione puo essere limitato sia perché il grado di approssimazione
e insufficiente, sia perché si raggiungono valori di alcune grandezze fisiche che comportano
una modifica delle leggi. Il valore, o pilt propriamente I'ordine di grandezza*, o.d.g. ~
O(10Fu.m.), di queste quantitd definisce la scala fisica del fenomeno e conseguentemente
delle leggi che lo regolano. Ricordiamo alcuni esempi senza approfondirne la problematica
visto che lo studente li incontrera nel prosieguo dei suoi studi:

e quando le dimensioni spaziali degli oggetti interagenti o della loro distanza relativa
si riduce alla scala microscopica (<1071%m), le leggi della meccanica classica devono
essere sostituite da quelle della meccanica quantistica;

e avvicinandosi alla velocita della della luce (¢ ~ 3 -10% m/s), i concetti di spazio e
tempo cosi ben radicati nelle nostre menti devono essere modificati secondo le leggi
della Relativita ristretta formulate da Einstein nel 1905;

e un altro esempio interessante e quello del numero di costituenti di un sistema. A causa
della struttura atomico-molecolare della materia, nei sistemi macroscopici il numero di
costituenti raggiunge facilmente il numero d’Avogadro (~ 6-10%%). Si devono applicare
le leggi della meccanica statistica che permettono di interpretare alcuni fenomeni,
come l'irreversibilita di alcuni processi, apparentemente in contraddizione con le leggi
fondamentali della meccanica.

Come risulta dagli esempi precedenti non tutte le leggi fisiche hanno lo stesso grado di
applicabilita, per alcune l'intervallo di validita & piuttosto limitato e in genere corrispondono
a fenomeni molto complessi trattati in modo semplificato (per esempio alcuni problemi della
dinamica dei fluidi la cui soluzione presenta difficolta matematiche quasi insormontabili).
Altre leggi invece hanno una portata molto generale che si estende su numerosi ordini di
grandezza delle quantita fisiche coinvolte, spesso corrispondono alle leggi pitu fondamentali
della fisica. Un esempio molto noto e particolarmente importante ¢ quello della legge delle
forze elettriche che conserva la stessa forma sia per le cariche su distanze macroscopiche
d ~ O(10°m) che per gli elettroni orbitanti intorno al nucleo dell’atomo d ~ O(1071%m)!

1.1.2 Definizione operativa di una grandezza fisica

Per ogni grandezza fisica deve dunque esistere una procedura, detta definizione operati-
va della grandezza, che descrive in modo univoco come ottenere il valore numerico della
grandezza stessa e questo costituisce, per quanto detto, il modo per definirla in fisica. Per
esempio alla domanda: che cosa ¢ il tempo? Un fisico rispondera “la quantita che si misura
con un orologio!” Per potere definire una grandezza G dobbiamo specificare due procedure
iniziali che corrispondono alle operazioni di:

4Indicativamente la potenza di 10 piii vicina al valore numerico della grandezza con date unita di misura.
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e confronto fra due realizzazioni G; e G4 della grandezza per stabilire se sono uguali
(G1 = G2) o diverse (G1 # G2);

e addizione di due realizzazioni G; e G5 che determina il significato di G3 = G1 + Gs.
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Figura 1.1: Definizione operativa di una grandezza fisica.

Per esempio in figura 1.1 prendiamo due asticelle A e B alle quali desideriamo associare
la grandezza fisica della loro lunghezza L4 e Lp. Se le affianchiamo, allineandole da un
estremo, possiamo stabilire che L1 = Ly se gli altri due estremi coincidono, e Ly # Lo
se non coincidono. Successivamente possiamo definire 1’addizione di Ly e Lo allineando il
secondo estremo di L con il primo di Ly e realizzando una nuova asticella corrispondente
alla somma L3 = Ly + Lo.

Le grandezze che hanno le stesse operazioni di confronto e addizione sono dette dello
stesso tipo, 'operazione di somma definisce una grandezza fisica dello stesso tipo delle gran-
dezze sommate. Le grandezze che non sono dello stesso tipo, nel senso sopra specificato, non
possono essere confrontate o sommate. Ricordiamo che le grandezze fisiche sono proprieta di
oggetti fisici o fenomeni e non esse stesse oggetti o fenomeni fisici. Le operazioni precedenti
corrispondono a manipolazioni di oggetti che possiedono la grandezza che si vuole conside-
rare, si richiede dunque che esse posseggano alcune proprieta analoghe alle corrispondenti
operazioni matematiche fra numeri:

e l'uguaglianza deve essere transitiva, cioe se G1 = G2 e G2 = (3 allora G; = G3;

e l'operazione di somma deve essere commutativa (G; + G2 = Ga + G1), associativa
(G + [G2 + G3] = [G1 + G2] + G3), e univoca (se Gs = G + G allora non esiste
nessun G4 finito tale che G35 = G1 + G2 + Gy).

Con queste proprieta le due operazioni permettono di definire fra grandezze dello stesso tipo:

e 'ordinamento totale: se esiste una G finita tale che G = G5 + G3 allora G1 > Go;
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e la sottrazione: se G3 = G1 + G allora Gy = G3 — Ga;
e la moltiplicazione per un numero puro® se Go = G1 +G1 +G1 + G, allora Gy = 4-G1;
e la divisione per un numero puro: se Go = G1 + G1 + G1 + G; allora G; = G2 /4

Una grandezza fisica € una proprieta per la quale le operazioni matematiche precedenti sono
definite in termini di procedure sugli oggetti fisici corrispondenti. La figura 1.2 riporta altri
esempi di definizioni operative di grandezze fisiche come:

e la massa gravitazionale, utilizzando una bilancia simmetrica a piatti. Si potra definire
my = mp quando la bilancia e in equilibrio, la somma m¢c = m4 + mp trovando
il corpo C' che equilibra la bilancia quando si sono posti A e B sullo stesso piatto, e
successivamente tutte le altre operazioni;

e la durata di un fenomeno (intervallo di tempo), si conteranno il numero di cicli N
che effettua un dispositivo che si ripete uguale a se stesso. In questo caso si definira
ta x Ny etp x Np e sara possibile effettuare tutte le operazioni precedenti;

e la forza statica, corrispondente all’idea di spinta o trazione, utilizzando 'effetto del-
lallungamento che essa produce su una molla data (F o« AX). In questo caso le
operazioni sono riconducibili a quelle sulle distanze.

4T3 4] 4]0

D —

ma = mp ma # mpg mgc =ma +mp
a) Definizione operativa della massa
Na Np
M nmr MMarmmm ] b) Definizione operativa
J U L L J LJ |_ L J L della durata temporale
taox Ny tp < Np
FoxAX

L00000~  h00000A2  H0000000000000——s
"\KMJ—B’ ‘_\mm B Fo=F,+ Fp

Fp=Fg Fa# Fp c) Definizione operativa della forza

Figura 1.2: Definizione operativa di alcune grandezze fisiche.

511 senso di questo aggettivo si chiarira nel paragrafo 1.2.2.
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Questa procedura operativa non € sempre applicabile e dunque alcune proprieta degli
oggetti fisici non corrispondono a grandezze fisiche, vediamo alcuni semplici esempi:

e la forma di un corpo; sebbene definita non puo essere addizionata, che cosa rappresenta
la somma di un cerchio e di un quadrato?

e il colore o sapore di un oggetto. In questo caso si riesce a definirne la somma (e.g.
mescolando il rosso e il giallo si ottiene il verde, o salato e dolce daranno 1'agrodolce),
tuttavia non & univoca, infatti se addiziono (e.g. mescolo) n volte un colore o un
sapore C' ottengo sempre lo stesso colore o sapore C' e dunque nella nostra terminologia
C =n - C che viola la regola di univocita.

Le procedure precedenti risultano concettualmente semplici, sebbene ci possano esse-
re degli accorgimenti molto complessi nel realizzarle, per gli esempi citati in precedenza
(lunghezze, masse, durate) o in generale per le grandezze cosiddette estensive; per le quali
aggregare due oggetti corrisponde naturalmente a fare la somma delle grandezze associate
(altri esempi di questo tipo sono le aree, i volumi, ecc...). Tuttavia esistono situazioni in
cui I'operazione di somma non ¢ cosl immediata, si pensi per esempio a due corpi uguali
alla stessa temperatura Ty, se li aggrego non osservo una temperatura 27y o anche a due
contenitori di gas alla stessa pressione pg se li unisco non ottengo un unico contenitore alla
pressione 2pg. Queste grandezze sono dette di tipo intensivo, e per definire 'operazione di
somma sara necessario passare attraverso uno strumento che collega la grandezza originale
a un’altra estensiva che possiamo sommare; ¢ il concetto di trasduzione che analizzeremo
in dettaglio nel capitolo 2. Negli esempi precedenti saranno le altezze delle colonnine di
mercurio nel termometro o nel barometro.

Stabilita la procedura operativa di definizione della grandezza dobbiamo trovare un modo
per associarle un valore numerico. Per questo dovremo prima definire I'unita campione U,
o unita di misura, della grandezza alla quale si assegna per convenzione il valore unitario.
Successivamente la procedura di confronto permette di ottenere repliche dell’unita campione,
e quella di addizione dei suoi multipli e sottomultipli. A questo punto il processo di misura
consiste nell’addizionare un numero opportuno di repliche e sottomultipli dell’unita campione
fino a raggiungere I'uguaglianza con la grandezza che si vuole misurare come schematizzato
nell’esempio della figura 1.3. Pertanto otteniamo il valore della grandezza:

G =6-us (1.1)

in cui G ¢ il valore numerico e U,SlG) I'unita di misura in cui viene espressa la grandezza.
Sui criteri per stabilire il valore delle unita campione e dunque nel complesso delle unita
di misura torneremo con maggiore dettaglio nel paragrafo 1.2.5. Il valore numerico della
grandezza fisica dipende dalla scelta dell’unita campione, tuttavia la grandezza esiste indi-
pendentemente da questa scelta. Per questo una grandezza GG puo essere misurata in termini
di un’unita Ug o di un’altra U{, e avremo due valori numerici diversi G # G'. Tuttavia la
grandezza fisica non cambia, pertanto se la nuova unita & k volte piu grande allora il valore
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Figura 1.3: Associazione del valore numerico a una grandezza fisica.

numerico scala di 1/k:
1
G =G Us:=G U, eL{é:kUg:g’:EQ (1.2)

Convenzionalmente tutte le grandezze dello stesso tipo si misurano, in un dato problema,
con la stessa unita. Conseguentemente il rapporto fra i valori numerici di due grandezze dello
stesso tipo non dipende dall’'unita scelta. Analogamente quando si addizionano fisicamente
(nel senso della procedura corrispondente all’operazione di somma) due grandezze dello
stesso tipo G3 = G5+ (G, anche i valori numerici soddisfano la stessa relazione Gz = G1 4+ Go
indipendentemente dall’unita scelta.

1.1.3 Rappresentazione numerica e concetto delle cifre significative

Nell’ambito della fisica classica®

si assume che 'operazione di misura non perturba il sistema,
sia riproducibile e indipendente dallo sperimentatore. Pertanto in linea di principio una
misura dovrebbe essere certa: come vedremo questa ¢ una situazione ideale e nella realta
a ogni misura sara associata un certo grado di incertezza che discuteremo in dettaglio nel
capitolo 2. Questo potra derivare sia da aspetti molto semplici e intuitivi, come per esempio
la risoluzione intrinseca dello strumento (e.g. con un righello con suddivisione al millimetro
non ¢ possibile potere apprezzare il micron!), che da situazioni pitt complesse come 1’analisi
delle incertezze casuali o sistematiche. In ogni caso il valore delle grandezze fisiche dopo
I’operazione di misura sono riportati come un numero reale, un valore dell’incertezza e le
opportune unita di misura:

G=(G+ M) UD (1.3)

Sui criteri per fornire i valori numerici di G e Ag e sul loro significato ritorneremo con mag-
giore dettaglio nei prossimi capitoli, per il momento siamo interessati all’aspetto numerico
del risultato. Matematicamente un numero reale puo essere rappresentato con un numero
arbitrario di cifre, nel caso delle grandezze fisiche misurate invece € molto importante defi-
nire il concetto di numero di cifre significative. FEsso corrisponde al numero di cifre scritte a
partire da destra fino all’'ultima (# 0) sulla sinistra. L’ultima cifra a destra indica il grado
di conoscenza del risultato, per esempio per un fisico 5,7 # 5,70 perché 5,6 < 5,7 < 5,8
mentre 5,69 < 5,70 < 5,71! Di conseguenza il valore numerico della (1.3) non pud con-

6A questo livello trascuriamo la la problematica quantitistica della relazione fra misura e grandezza,
adottiamo il punto di vista classico in cui il valore della grandezza esiste indipendentemente dall’operazione
di misura.
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tenere un valore arbitrario di cifre perché significherebbe avere una conoscenza perfetta, in
contrasto con il valore finito della indeterminazione Ag con la quale si conosce la grandezza
misurata. Ritorneremo sul criterio di scelta del numero di cifre nel paragrafo 2.2.4.

Per la notazione numerica della (1.3) si potra usare la notazione decimale pin familiare
oppure quella esponenziale o scientifica in cui il numero viene rappresentato con una mantissa
(tipicamente compresa fra 1071 < 10?) e la corrispondente potenze di 10; per esempio 1023 =
1,023 - 10%. Questo sistema presenta alcuni vantaggi:

e permette di valutare immediatamente I'ordine di grandezza della quantita in questione;

e permette, come analizzeremo in dettaglio successivamente, di riportare semplicemente
il numero corretto delle cifre significative con cui rappresentare i risultati;

e permette di effettuare molto piu facilmente i calcoli di espressioni complesse separando
le operazioni fra le mantisse e fra gli esponenti. In particolare si ottiene senza grosse
difficolta (spesso a mente!) 'ordine di grandezza del risultato finale”. Per esempio:

X — 1200x0,00006x9.000.000 — 1,2:107°x 6,0-10_°x 9,0:10"°

0,004 x30.000 4,0-10-3x 3,0-10F4 (1 4)
X = % L 10F3-5+6-(=3+4) — 5 4.103

In diverse applicazioni puo essere comodo usare rappresentazioni in basi diverse, tipi-
camente: 2 (sistema binario), 8 (ottale) o 16 (esadecimale). Questo avviene in particolare
quando si usano sistemi computerizzati (acquisizione dati, programmazione, ecc...) in cui la
base 2 e le sue potenze permettono di operare con maggiore semplicita ed efficacia a causa
della naturale codifica in due possibili stati dell’informazione ricavabile nei dispositivi fisici
usati: il cosiddetto 1 bit di informazione (e.g. on/off di un interruttore, 0/1 di una porta lo-
gica, ecc...). L’uso di queste basi permette anche di codificare facilmente nell’ambito di una
sola grandezza numerica (una parola nel linguaggio dell’informatica) diverse informazioni
suddividendole fra i vari campi di bit che compongono la sua rappresentazione numerica.

1.1.4 Grandezze scalari e vettoriali

Nei casi pit semplici le grandezze fisiche sono completamente descritte da un unico valore
numerico, per esempio la lunghezza di un tavolo, la durata di un moto, la temperatura di
un bagno termico, ecc..; e in questo caso si parla di grandezze scalari. In numerosi casi
la grandezza fisica non puo essere completamente caratterizzata soltanto con un numero
(la sua intensita) ma possono esserci anche altre caratteristiche importanti, per esempio
immaginiamo uno spostamento fra due punti A e B oltre la distanza AB potrei essere
interessato anche alla retta definita dai due punti ed eventualmente dal verso in cui si compie
A — B o B — A. Questo ¢ il caso da manuale che porta alla definizione delle grandezze

7Questa ottima abitudine era molto diffusa all’epoca dei regoli calcolatori che disponevano di poche cifre
significative, mentre oggigiorno con le moderne calcolatrici gli errori di battitura sono sempre in agguato!
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