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Prefazione

Questo libro nasce dall’esperienza nei corsi di laboratorio di fisica del primo anno tenuti

dagli autori per i loro compiti didattici. Il testo verte sulle problematiche della misura

delle grandezze fisiche, delle tecniche di analisi dei dati sperimentali e contiene esperienze di

meccanica e termodinamica. Dunque si adatta ai programmi del primo anno di studio per gli

studenti del corso di laurea in Fisica, ed eventualmente per i corsi di studio in Matematica,

Chimica e Ingegneria se prevedono attività di laboratorio di fisica.

Rispetto a una prima esperienza editoriale di qualche anno addietro1, nella quale aveva-

mo privilegiato l’impatto delle esperienze sulla fenomenologia della fisica generale, l’opera

affronta in maniera più sistematica le prime due tematiche relative ai fondamenti della tec-

nica sperimentale e all’analisi statistica dei dati. Queste parti sono state significativamente

ampliate e forniscono una trattazione esauriente e sufficientemente approfondita per una

laurea di primo livello.

Nella parte riguardante la misura delle grandezze, sviluppata nei primi tre capitoli, oltre

alla problematica canonica riguardante le grandezze, gli strumenti e le incertezze, abbiamo

presentato anche una serie di argomenti che generalmente vengono affrontati rapidamente,

confidando sul loro carattere intuitivo, senza rendere merito alla loro rilevanza concettuale;

alcuni argomenti sono più avanzati, si incontrano raramente nella bibliografia di base (e non

solo), ma sono stati inseriti come stimolo per ulteriori approfondimenti (e.g. la trattazione

formale dell’analisi dimensionale). La prima parte, sulla misura delle grandezze fisiche, si

conclude con una breve introduzione ai principali metodi di analisi dei dati. Essendo svolta

prima della trattazione completa delle tecniche statistiche, ma necessaria per permettere

agli studenti di iniziare l’attività in laboratorio, la presentazione si fonda maggiormente sul

carattere intuitivo/qualitativo dei risultati, cercando di farne emergere il significato fisico

sostanziale.

La parte riguardante l’analisi statistica dei dati sperimentali si articola invece su otto

capitoli e risulta piuttosto completa, probabilmente sovradimensionata per un corso del

primo anno, ma ben adattata per accompagnare lo studente lungo tutto il corso di studi di

primo livello. Lo sviluppo segue un ordine abbastanza consolidato: si parte dai concetti di

probabilità e delle variabili aleatorie, successivamente si affronta il problema dell’inferenza

1V. Canale, M. Della Pietra, Fisica in laboratorio, Meccanica e Termodinamica, ARACNE 2008
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statistica con lo studio sperimentale delle distribuzioni, la stima dei parametri e dei loro

intervalli di variabilità, l’analisi della regressione e il test di ipotesi. Come accennato, gli

argomenti esposti sono molteplici, in alcuni casi piuttosto originali (e.g. l’origine della

distribuzione di Gauss assente da quasi tutta la bibliografia di base!) e il livello della

trattazione non è sempre elementare, pertanto per un corso del primo anno si dovranno

effettuare delle scelte mirate. Tuttavia abbiamo privilegiato la completezza per permettere

agli studenti di avere un riferimento generale e stimolare anche la curiosità intellettiva di

quelli più intraprendenti. L’impostazione è chiaramente quella della fisica sperimentale,

tuttavia sono presenti numerosi riferimenti ad altri campi delle scienze e anche a specifiche

tematiche di tipo statistico/matematico. In effetti uno dei problemi maggiori in questo

settore, è quello della diversità di linguaggio fra le varie comunità scientifiche su argomenti

molto simili nella sostanza; pensiamo che sia un bene abituare da subito gli studenti a questa

forma di apertura mentale.

In un testo di laboratorio di fisica non poteva mancare una parte sperimentale(!) che è

sviluppata negli ultimi quattro capitoli delle terza parte. I primi tre riportano delle espe-

rienze molto classiche su argomenti di meccanica e termodinamica, comprese quelle che non

possono mancare, come per esempio: la caduta del grave, il pendolo e quelle di termome-

tria/calorimetria. Alcune esperienze, invece, sono particolarmente adatte per evidenziare

sperimentalmente e approfondire i concetti sviluppati nei corsi fenomenologici, fra queste

sono particolarmente rappresentative quelle sulle oscillazioni forzate, sulle onde, sulla diffu-

sione termica e sul motore termico. Alcuni di questi apparati non sono facilmente replicabili

in gran numero per delle classi di laboratorio, mentre si prestano molto bene per esperien-

ze dimostrative/quantitative molto spettacolari da svolgere in aula. Questi argomenti sono

stati raggruppati in un unico capitolo disponibile on line.

La parte fenomenologica di fisica è stata limitata al massimo, rimandando sistematica-

mente alla bibliografia e, per quanto possibile, si è cercato di presentare l’attività di labo-

ratorio come la scoperta di leggi fisiche piuttosto che una semplice verifica delle previsioni

teoriche. Dal punto di vista strumentale abbiamo cercato di usare della strumentazione rela-

tivamente avanzata (e.g sensori di vario tipo interfacciati con computer). In particolare sono

diventati accessibili, a costi relativamente contenuti, numerosi strumenti che permettono di

effettuare misure di laboratorio in tempo reale. L’uso di questa strumentazione consente,

generalmente, un significativo miglioramento della sensibilità sperimentale con un duplice

vantaggio. Da un lato si manifestano in modo evidente gli effetti delle fluttuazioni casuali

ed è possibile applicare le tecniche di analisi statistica. Dall’altro si osservano fenomeni

che corrispondono a effetti generalmente trascurati nelle schematizzazioni elementari e che

richiedono, per comprenderli, interessanti approfondimenti (per esempio l’effetto della mas-

sa delle molle nello studio dei moti armonici o l’attrito volvente nel rotolamento sul piano

inclinato). Questa interconnessione fra miglioramento della sensibilità sperimentale e nuova

fenomenologia è interessante perché costituisce una caratteristica della ricerca fondamentale,

un esempio storicamente molto importante di questo tipo è stata la scoperta della radiazione

di fondo cosmico avvenuta grazie al miglioramento della qualità delle antenne ricettive.
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Per rimarcarne il carattere formativo, le esperienze sono piuttosto articolate e si rico-

noscono sempre tutti i diversi passi della fisica sperimentale: concezione dell’esperimento,

preparazione dell’apparato, presa dati, analisi delle misure e risultati. Questo è preferibile

alla proposizione di esperimenti che, seppur molto riusciti perché ottimizzati dall’uso di ma-

teriale molto specializzato, risultano delle scatola nere. I sistemi realizzati sono, in linea di

principio, perfettamente spiegabili per gli studenti del primo anno con il minimo bagaglio

di conoscenze in fisica delle scuole superiori; inoltre la gran parte di essi si può realizzare

anche con strumentazione meno sofisticata di quella proposta, senza nulla togliere al valore

concettuale dell’esperimento.

Riguardo la bibliografia abbiamo preferito inserire i riferimenti direttamente nel corpo

del testo invece di un elenco finale scorrelato dagli argomenti; questa scelta ricalca quella

della letteratura scientifica e l’idea è quella di stimolare puntualmente la curiosità del let-

tore. A parte le opere di carattere molto generale (per gli argomenti di analisi matematica,

di algebra lineare e della fenomenologia della fisica) che sono indicative, le fonti citate, pur

riflettendo i gusti degli autori, sono molto varie e comprendono testi che seguono diverse

impostazioni didattiche e culturali, con lo scopo di farne scoprire le differenze e i rispettivi

pregi. Naturalmente non potevano mancare alcuni classici fondamentali, principalmente per

la parte relativa all’analisi statistica dei dati, che si rivelano ancora, a distanza di decenni,

delle fonti inesauribili di informazione e di approfondimento. I riferimenti alla rete informati-

ca sono limitati poiché, in generale, gli studenti già dominano facilmente questa interessante

fonte di informazione; quello che ci interessa suggerire è la scoperta dei grandi testi, anche

a costo di uno sforzo intellettivo supplementare.

Per le notazioni matematiche abbiamo scelto quelle attualmente più diffuse in letteratura,

mentre per la rappresentazione numerica usiamo la virgola per separare la parte intera da

quella decimale. Ovviamente, data la natura del testo, le unità di misura seguite sono quelle

del Sistema Internazionale tranne nelle rare occasioni dove esiste una motivata esigenza

didattica (e.g. la caloria).

Un ringraziamento ai numerosi colleghi per l’aiuto in laboratorio, le discussioni e i sug-

gerimenti; infine un ringraziamento particolare ai tecnici dei laboratori didattici del Diparti-

mento di Fisica dell’Università Federico II di Napoli per la disponibilità dimostrata in questi

anni.
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14.1.1 Le proprietà termometriche e i termometri . . . . . . . . . . . . . . . 602

14.1.2 Misura della costante di tempo del termometro . . . . . . . . . . . . . 607

14.2 La calorimetria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

14.2.1 La definizione calorimetrica della quantità di calore . . . . . . . . . . . 615
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Capitolo 1

Le grandezze fisiche

In questo primo capitolo affronteremo la tematica fondamentale delle grandezze fisiche. Do-

po la loro definizione operativa, discuteremo il concetto delle loro dimensioni e della loro

rappresentazione quantitativa all’interno di un sistema di untà di misura.
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1.1 Le grandezze fisiche e loro proprietà elementari

Una grandezza fisica rappresenta una proprietà di un fenomeno o di un oggetto fisico che

può essere messa in evidenza e alla quale, tramite la procedura di misura con uno strumento

che discuteremo in dettaglio nel seguito, si può associare una determinazione quantitativa,

tipicamente un numero reale: il cosiddetto risultato della misura. L’esempio forse più fa-

miliare di grandezza fisica è quello della distanza fra due oggetti che si può misurare con

un metro, almeno nelle applicazioni della vita quotidiana. Un altro esempio molto familiare

è costituito dell’intervallo di tempo trascorso fra due eventi (durata) e in questo caso lo

strumento è un orologio.

Gli esempi citati di distanza e di intervallo di tempo sono fra i più importanti perché

da queste grandezze, come vedremo, se ne possono costruire molte altre come per esempio

la velocità, l’accelerazione, ecc.. Inoltre la loro interpretazione intuitiva coincide con la

loro definizione, almeno nell’ambito della meccanica classica. Ogni grandezza ha le sue

peculiarità, e spesso la sua interpretazione corretta non è sempre cos̀ı immediata. Per

esempio esistono:

• grandezze molto intuitive che si misurano accuratamente, ma la cui definizione corretta

presenta non poche difficoltà concettuali. Questo è il caso della massa, a tutti appa-

rentemente ben nota, la cui definizione esauriente richiede i principi delle più avanzate

teorie fisiche come la Relatività Generale;

• grandezze, sempre molto intuitive e ben definibili operativamente, che sono difficili

da definire anche a un livello molto elementare di speculazione. L’esempio più noto

è forse quello della temperatura, cos̀ı familiare nell’esperienza, che per essere defini-

ta, senza riferimento al tipo di termometro usato, richiede il secondo principio della

termodinamica o la meccanica statistica (!);

• grandezze poco intuitive, spesso derivate da altre, che permettono di evidenziare e

descrivere meglio alcune caratteristiche dei fenomeni fisici. Un esempio notevole è

quello della quantità di moto con la quale si ottiene la formulazione più completa delle

leggi della meccanica rispetto all’uso della grandezza forza, sicuramente più intuitiva;

• grandezze apparentemente ausiliarie che, definite in alcuni fenomeni per semplificarne

la descrizione, si prestano successivamente a generalizzazioni che superano il semplice

ambito della loro definizione. Gli esempi più importanti sono quelli dell’energia e del

momento angolare che, introdotti nella meccanica, si ritrovano in tutti i campi della

fisica fino al livello microscopico fondamentale.

1.1.1 Il metodo sperimentale e le leggi fisiche

La fisica è la scienza che studia e descrive i fenomeni naturali, una delle sue caratteristiche

fondamentali è rappresentata dal carattere obbiettivo di questa conoscenza, ovvero indipen-

dente per quanto possibile dalle persone che la acquisiscono. Conseguentemente i metodi di
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indagine devono possedere questo carattere di oggettività1. Il modo per realizzare al meglio

queste condizioni è quello di fornire, sulla base di osservazioni sperimentali, una descrizione

quantitativa dei fenomeni. Le osservazioni si effettuano tramite le misure, che forniscono

dei numeri che vengono elaborati, analizzati e successivamente inquadrate nell’ambito di

modelli o teorie fisiche.

Per organizzare logicamente e quantitativamente le osservazioni e le misure si ricorre alle

leggi fisiche. Una legge è una relazione che collega le grandezze fisiche coinvolte in un partico-

lare fenomeno. In generale essa viene rappresentata sotto forma di una relazione matematica

fra le grandezze. La metodologia di analisi della fisica è stata tracciata da Galileo che per

primo adottò in modo sistematico il metodo sperimentale2. In questo approccio la validità

di una legge non dipende dal suo grado di intuizione, dalla sua eleganza formale, dal rigore

logico per la sua deduzione, ecc... Il criterio di giudizio finale è rappresentato dall’accordo

delle previsioni con gli esperimenti che misurano le grandezze coinvolte nel fenomeno3. Nella

storia della fisica, contrariamente a quanto viene talvolta sostenuto, le grandi rivoluzioni non

sono mai nate da speculazioni astratte, il vero motore del progresso della conoscenza sono

stati sempre gli esperimenti. Tutte le speculazioni, per quanto sorprendenti, sono sempre

scaturite da risultati sperimentali il cui risultato ha profondamente messo in crisi il modo

di concepire i fenomeni naturali.

Una conseguenza del metodo sperimentale è l’assunto che ogni qualvolta si scrive una

legge fra grandezze fisiche ognuna di esse può, almeno in linea di principio, essere misurata

direttamente e dunque vi si può associare una quantità numerica definita. Da questa carat-

teristica segue che, nel cercare di formulare le leggi fisiche, si proceda per approssimazioni

successive cercando di separare i diversi contributi al fenomeno e considerando in un primo

momento soltanto quelli maggiori. Spesso il problema viene affrontato schematizzandolo e

realizzandolo in forma semplificata per capirne gli aspetti più significativi. A volte questa

operazione richiede un certo grado di astrazione e si finiscono per studiare fenomeni fisici che

non si osservano direttamente in natura. Due esempi abbastanza rappresentativi di questo

modo di procedere sono quelli dello studio della caduta libera e del piano inclinato liscio

(due processi, a stretto rigore, inesistenti!). Nell’ambito della fisica microscopica questo ap-

proccio è ancora più esaltato a causa delle enormi difficoltà matematiche nella risoluzione

delle equazioni. Scherzosamente potremo affermare che il modo di procedere assomiglia a

quello di un uomo che, avendo perso un mazzo di chiavi per strada, le cerca sotto a un

lampione perché l̀ı c’è la luce!

Dalle osservazioni appena enunciate dovrebbe risultare immediato che le leggi fisiche

1Alla base vi è l’ipotesi che i fenomeni naturali sono indipendenti, a parità di tutte le altre condizioni,

dal luogo e dal momento in cui vengono studiati.
2Questa è stata la vera grande rivoluzione Galileana ben oltre la nota e spesso citata a sproposito adesione

al sistema Copernicano.
3Naturalmente questo non significa che nelle fasi di elaborazione e ricerca delle leggi non si possa fare

ricorso ad alcuni dei criteri citati. Il famigerato senso fisico è forse un complesso, abbastanza poco defini-

bile, di queste attitudini mentali che finisce talvolta per rendere la fisica una materia poco incline a rigide

schematizzazioni, come ben sanno gli studenti di Matematica abituati a ben altro rigore formale!
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possono non avere una validità universale; questo non significa che sono sbagliate ma che

il loro dominio di applicazione può essere limitato sia perché il grado di approssimazione

è insufficiente, sia perché si raggiungono valori di alcune grandezze fisiche che comportano

una modifica delle leggi. Il valore, o più propriamente l’ordine di grandezza4, o.d.g. ∼

O(10ku.m.), di queste quantità definisce la scala fisica del fenomeno e conseguentemente

delle leggi che lo regolano. Ricordiamo alcuni esempi senza approfondirne la problematica

visto che lo studente li incontrerà nel prosieguo dei suoi studi:

• quando le dimensioni spaziali degli oggetti interagenti o della loro distanza relativa

si riduce alla scala microscopica (≤10−10m), le leggi della meccanica classica devono

essere sostituite da quelle della meccanica quantistica;

• avvicinandosi alla velocità della della luce (c ≈ 3 · 108 m/s), i concetti di spazio e

tempo cos̀ı ben radicati nelle nostre menti devono essere modificati secondo le leggi

della Relatività ristretta formulate da Einstein nel 1905;

• un altro esempio interessante è quello del numero di costituenti di un sistema. A causa

della struttura atomico-molecolare della materia, nei sistemi macroscopici il numero di

costituenti raggiunge facilmente il numero d’Avogadro (≃ 6·1023). Si devono applicare

le leggi della meccanica statistica che permettono di interpretare alcuni fenomeni,

come l’irreversibilità di alcuni processi, apparentemente in contraddizione con le leggi

fondamentali della meccanica.

Come risulta dagli esempi precedenti non tutte le leggi fisiche hanno lo stesso grado di

applicabilità, per alcune l’intervallo di validità è piuttosto limitato e in genere corrispondono

a fenomeni molto complessi trattati in modo semplificato (per esempio alcuni problemi della

dinamica dei fluidi la cui soluzione presenta difficoltà matematiche quasi insormontabili).

Altre leggi invece hanno una portata molto generale che si estende su numerosi ordini di

grandezza delle quantità fisiche coinvolte, spesso corrispondono alle leggi più fondamentali

della fisica. Un esempio molto noto e particolarmente importante è quello della legge delle

forze elettriche che conserva la stessa forma sia per le cariche su distanze macroscopiche

d ∼ O(100m) che per gli elettroni orbitanti intorno al nucleo dell’atomo d ∼ O(10−10m)!

1.1.2 Definizione operativa di una grandezza fisica

Per ogni grandezza fisica deve dunque esistere una procedura, detta definizione operati-

va della grandezza, che descrive in modo univoco come ottenere il valore numerico della

grandezza stessa e questo costituisce, per quanto detto, il modo per definirla in fisica. Per

esempio alla domanda: che cosa è il tempo? Un fisico risponderà “la quantità che si misura

con un orologio!” Per potere definire una grandezza G dobbiamo specificare due procedure

iniziali che corrispondono alle operazioni di:

4Indicativamente la potenza di 10 più vicina al valore numerico della grandezza con date unità di misura.
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• confronto fra due realizzazioni G1 e G2 della grandezza per stabilire se sono uguali

(G1 = G2) o diverse (G1 6= G2);

• addizione di due realizzazioni G1 e G2 che determina il significato di G3 = G1 +G2.

A

LA = LBLA < LBLA > LB
B

A
C

B

LC = LA + LB

A

UL

{N}A

LA = {N}A · UL

Figura 1.1: Definizione operativa di una grandezza fisica.

Per esempio in figura 1.1 prendiamo due asticelle A e B alle quali desideriamo associare

la grandezza fisica della loro lunghezza LA e LB . Se le affianchiamo, allineandole da un

estremo, possiamo stabilire che L1 = L2 se gli altri due estremi coincidono, e L1 6= L2

se non coincidono. Successivamente possiamo definire l’addizione di L1 e L2 allineando il

secondo estremo di L1 con il primo di L2 e realizzando una nuova asticella corrispondente

alla somma L3 = L1 + L2.

Le grandezze che hanno le stesse operazioni di confronto e addizione sono dette dello

stesso tipo, l’operazione di somma definisce una grandezza fisica dello stesso tipo delle gran-

dezze sommate. Le grandezze che non sono dello stesso tipo, nel senso sopra specificato, non

possono essere confrontate o sommate. Ricordiamo che le grandezze fisiche sono proprietà di

oggetti fisici o fenomeni e non esse stesse oggetti o fenomeni fisici. Le operazioni precedenti

corrispondono a manipolazioni di oggetti che possiedono la grandezza che si vuole conside-

rare, si richiede dunque che esse posseggano alcune proprietà analoghe alle corrispondenti

operazioni matematiche fra numeri:

• l’uguaglianza deve essere transitiva, cioè se G1 = G2 e G2 = G3 allora G1 = G3;

• l’operazione di somma deve essere commutativa (G1 + G2 = G2 + G1), associativa

(G1 + [G2 + G3] = [G1 + G2] + G3), e univoca (se G3 = G1 + G2 allora non esiste

nessun G4 finito tale che G3 = G1 +G2 +G4).

Con queste proprietà le due operazioni permettono di definire fra grandezze dello stesso tipo:

• l’ordinamento totale: se esiste una G3 finita tale che G1 = G2 +G3 allora G1 > G2;
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• la sottrazione: se G3 = G1 +G2 allora G1 ≡ G3 −G2;

• la moltiplicazione per un numero puro
5 se G2 = G1+G1+G1+G1 allora G2 ≡ 4 ·G1;

• la divisione per un numero puro: se G2 = G1 +G1 +G1 +G1 allora G1 ≡ G2/4

Una grandezza fisica è una proprietà per la quale le operazioni matematiche precedenti sono

definite in termini di procedure sugli oggetti fisici corrispondenti. La figura 1.2 riporta altri

esempi di definizioni operative di grandezze fisiche come:

• la massa gravitazionale, utilizzando una bilancia simmetrica a piatti. Si potrà definire

mA = mB quando la bilancia è in equilibrio, la somma mC = mA + mB trovando

il corpo C che equilibra la bilancia quando si sono posti A e B sullo stesso piatto, e

successivamente tutte le altre operazioni;

• la durata di un fenomeno (intervallo di tempo), si conteranno il numero di cicli N

che effettua un dispositivo che si ripete uguale a se stesso. In questo caso si definirà

tA ∝ NA e tB ∝ NB e sarà possibile effettuare tutte le operazioni precedenti;

• la forza statica, corrispondente all’idea di spinta o trazione, utilizzando l’effetto del-

l’allungamento che essa produce su una molla data (F ∝ ∆X). In questo caso le

operazioni sono riconducibili a quelle sulle distanze.

NB

︷ ︸︸ ︷
NA

︷ ︸︸ ︷

tA ∝ NA
tB ∝ NB

A 

B 

A 

B 

C 

FA = FB FA 6= FB

FC = FA + FB

F ∝ ∆X

a) Definizione operativa della massa  

c) Definizione operativa della forza  

b) Definizione operativa 

 della durata temporale 

A B 
B 

A 
A B C 

mA = mB mA 6= mB mC = mA +mB

A BBB 
AAA BAAAAAA   C

A 

BBBB    

6666666

Figura 1.2: Definizione operativa di alcune grandezze fisiche.

5Il senso di questo aggettivo si chiarirà nel paragrafo 1.2.2.
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Questa procedura operativa non è sempre applicabile e dunque alcune proprietà degli

oggetti fisici non corrispondono a grandezze fisiche, vediamo alcuni semplici esempi:

• la forma di un corpo; sebbene definita non può essere addizionata, che cosa rappresenta

la somma di un cerchio e di un quadrato?

• il colore o sapore di un oggetto. In questo caso si riesce a definirne la somma (e.g.

mescolando il rosso e il giallo si ottiene il verde, o salato e dolce daranno l’agrodolce),

tuttavia non è univoca, infatti se addiziono (e.g. mescolo) n volte un colore o un

sapore C ottengo sempre lo stesso colore o sapore C e dunque nella nostra terminologia

C = n · C che viola la regola di univocità.

Le procedure precedenti risultano concettualmente semplici, sebbene ci possano esse-

re degli accorgimenti molto complessi nel realizzarle, per gli esempi citati in precedenza

(lunghezze, masse, durate) o in generale per le grandezze cosiddette estensive; per le quali

aggregare due oggetti corrisponde naturalmente a fare la somma delle grandezze associate

(altri esempi di questo tipo sono le aree, i volumi, ecc...). Tuttavia esistono situazioni in

cui l’operazione di somma non è cos̀ı immediata, si pensi per esempio a due corpi uguali

alla stessa temperatura T0, se li aggrego non osservo una temperatura 2T0 o anche a due

contenitori di gas alla stessa pressione p0 se li unisco non ottengo un unico contenitore alla

pressione 2 p0. Queste grandezze sono dette di tipo intensivo, e per definire l’operazione di

somma sarà necessario passare attraverso uno strumento che collega la grandezza originale

a un’altra estensiva che possiamo sommare; è il concetto di trasduzione che analizzeremo

in dettaglio nel capitolo 2. Negli esempi precedenti saranno le altezze delle colonnine di

mercurio nel termometro o nel barometro.

Stabilita la procedura operativa di definizione della grandezza dobbiamo trovare un modo

per associarle un valore numerico. Per questo dovremo prima definire l’unità campione U ,

o unità di misura, della grandezza alla quale si assegna per convenzione il valore unitario.

Successivamente la procedura di confronto permette di ottenere repliche dell’unità campione,

e quella di addizione dei suoi multipli e sottomultipli. A questo punto il processo di misura

consiste nell’addizionare un numero opportuno di repliche e sottomultipli dell’unità campione

fino a raggiungere l’uguaglianza con la grandezza che si vuole misurare come schematizzato

nell’esempio della figura 1.3. Pertanto otteniamo il valore della grandezza:

G = G · U (G)
m (1.1)

in cui G è il valore numerico e U
(G)
m l’unità di misura in cui viene espressa la grandezza.

Sui criteri per stabilire il valore delle unità campione e dunque nel complesso delle unità

di misura torneremo con maggiore dettaglio nel paragrafo 1.2.5. Il valore numerico della

grandezza fisica dipende dalla scelta dell’unità campione, tuttavia la grandezza esiste indi-

pendentemente da questa scelta. Per questo una grandezza G può essere misurata in termini

di un’unità UG o di un’altra U ′

G
e avremo due valori numerici diversi G 6= G′. Tuttavia la

grandezza fisica non cambia, pertanto se la nuova unità è k volte più grande allora il valore
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UL LA = {N}A · UL

UL/10

A

UL
UL UL UL/106 

{N}A = 3, 6

Figura 1.3: Associazione del valore numerico a una grandezza fisica.

numerico scala di 1/k:

G = G · UG = G′ · U ′
G e U ′

G = k UG ⇒ G′ =
1

k
G (1.2)

Convenzionalmente tutte le grandezze dello stesso tipo si misurano, in un dato problema,

con la stessa unità. Conseguentemente il rapporto fra i valori numerici di due grandezze dello

stesso tipo non dipende dall’unità scelta. Analogamente quando si addizionano fisicamente

(nel senso della procedura corrispondente all’operazione di somma) due grandezze dello

stesso tipo G3 = G2+G1, anche i valori numerici soddisfano la stessa relazione G3 = G1+G2

indipendentemente dall’unità scelta.

1.1.3 Rappresentazione numerica e concetto delle cifre significative

Nell’ambito della fisica classica6 si assume che l’operazione di misura non perturba il sistema,

sia riproducibile e indipendente dallo sperimentatore. Pertanto in linea di principio una

misura dovrebbe essere certa: come vedremo questa è una situazione ideale e nella realtà

a ogni misura sarà associata un certo grado di incertezza che discuteremo in dettaglio nel

capitolo 2. Questo potrà derivare sia da aspetti molto semplici e intuitivi, come per esempio

la risoluzione intrinseca dello strumento (e.g. con un righello con suddivisione al millimetro

non è possibile potere apprezzare il micron!), che da situazioni più complesse come l’analisi

delle incertezze casuali o sistematiche. In ogni caso il valore delle grandezze fisiche dopo

l’operazione di misura sono riportati come un numero reale, un valore dell’incertezza e le

opportune unità di misura:

G = (G ±∆G) U
(G)
m (1.3)

Sui criteri per fornire i valori numerici di G e ∆G e sul loro significato ritorneremo con mag-

giore dettaglio nei prossimi capitoli, per il momento siamo interessati all’aspetto numerico

del risultato. Matematicamente un numero reale può essere rappresentato con un numero

arbitrario di cifre, nel caso delle grandezze fisiche misurate invece è molto importante defi-

nire il concetto di numero di cifre significative. Esso corrisponde al numero di cifre scritte a

partire da destra fino all’ultima ( 6= 0) sulla sinistra. L’ultima cifra a destra indica il grado

di conoscenza del risultato, per esempio per un fisico 5, 7 6= 5, 70 perché 5, 6 ≤ 5, 7 ≤ 5, 8

mentre 5, 69 ≤ 5, 70 ≤ 5, 71! Di conseguenza il valore numerico della (1.3) non può con-

6A questo livello trascuriamo la la problematica quantitistica della relazione fra misura e grandezza,

adottiamo il punto di vista classico in cui il valore della grandezza esiste indipendentemente dall’operazione

di misura.
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tenere un valore arbitrario di cifre perché significherebbe avere una conoscenza perfetta, in

contrasto con il valore finito della indeterminazione ∆G con la quale si conosce la grandezza

misurata. Ritorneremo sul criterio di scelta del numero di cifre nel paragrafo 2.2.4.

Per la notazione numerica della (1.3) si potrà usare la notazione decimale più familiare

oppure quella esponenziale o scientifica in cui il numero viene rappresentato con una mantissa

(tipicamente compresa fra 10−1
÷102) e la corrispondente potenze di 10; per esempio 1023 ≡

1, 023 · 103. Questo sistema presenta alcuni vantaggi:

• permette di valutare immediatamente l’ordine di grandezza della quantità in questione;

• permette, come analizzeremo in dettaglio successivamente, di riportare semplicemente

il numero corretto delle cifre significative con cui rappresentare i risultati;

• permette di effettuare molto più facilmente i calcoli di espressioni complesse separando

le operazioni fra le mantisse e fra gli esponenti. In particolare si ottiene senza grosse

difficoltà (spesso a mente!) l’ordine di grandezza del risultato finale7. Per esempio:

X = 1200×0,00006×9.000.000
0,004×30.000 ≡

1,2·10+3
× 6,0·10−5

× 9,0·10+6

4,0·10−3× 3,0·10+4

X ≡
1,2× 6,0× 9,0

4,0× 3,0 · 10+3−5+6−(−3+4) = 5, 4 · 103
(1.4)

In diverse applicazioni può essere comodo usare rappresentazioni in basi diverse, tipi-

camente: 2 (sistema binario), 8 (ottale) o 16 (esadecimale). Questo avviene in particolare

quando si usano sistemi computerizzati (acquisizione dati, programmazione, ecc...) in cui la

base 2 e le sue potenze permettono di operare con maggiore semplicità ed efficacia a causa

della naturale codifica in due possibili stati dell’informazione ricavabile nei dispositivi fisici

usati: il cosiddetto 1 bit di informazione (e.g. on/off di un interruttore, 0/1 di una porta lo-

gica, ecc...). L’uso di queste basi permette anche di codificare facilmente nell’ambito di una

sola grandezza numerica (una parola nel linguaggio dell’informatica) diverse informazioni

suddividendole fra i vari campi di bit che compongono la sua rappresentazione numerica.

1.1.4 Grandezze scalari e vettoriali

Nei casi più semplici le grandezze fisiche sono completamente descritte da un unico valore

numerico, per esempio la lunghezza di un tavolo, la durata di un moto, la temperatura di

un bagno termico, ecc..; e in questo caso si parla di grandezze scalari. In numerosi casi

la grandezza fisica non può essere completamente caratterizzata soltanto con un numero

(la sua intensità) ma possono esserci anche altre caratteristiche importanti, per esempio

immaginiamo uno spostamento fra due punti A e B oltre la distanza AB potrei essere

interessato anche alla retta definita dai due punti ed eventualmente dal verso in cui si compie

A → B o B → A. Questo è il caso da manuale che porta alla definizione delle grandezze

7Questa ottima abitudine era molto diffusa all’epoca dei regoli calcolatori che disponevano di poche cifre

significative, mentre oggigiorno con le moderne calcolatrici gli errori di battitura sono sempre in agguato!




