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Circuiti per la microelettronica, V edizione, è un testo concepito per i corsi di base sui circuiti 

elettronici per le lauree del settore dell’Ingegneria elettronica; risulta inoltre utile anche per 

chi, ingegnere o professionista del settore, desideri aggiornare le proprie conoscenze.

Così come è stato per le prime quattro edizioni, l’obiettivo di questo libro è di sviluppare 

nel lettore la capacità di analizzare e progettare un circuito elettronico, sia esso analogico o 

digitale, discreto o integrato. Sebbene siano trattate anche le applicazioni dei circuiti inte-

grati (CI), l’enfasi è posta sul progetto dei circuiti a transistori discreti. Ciò perché è nostra 

opinione che, anche se la maggior parte di coloro che studieranno da questo testo non intra-

prenderà la carriera di progettista di circuiti integrati, la conoscenza di ciò che c’è all’interno 

di un circuito integrato li aiuterà a trovare per essi applicazioni intelligenti e innovative. Del 

resto, grazie ai progressi della tecnologia dei circuiti VLSI e delle metodologie di progetto, il 

progetto dei CI stessi è diventato accessibile ad un numero crescente di ingegneri.

Prerequisiti

Il prerequisito per lo studio del materiale presentato in questo testo è un corso base di analisi 

dei circuiti elettrici. Per completezza, alcuni argomenti sui circuiti lineari sono riportati nelle 

Appendici: in particolare, i parametri delle reti a due porte sono in Appendice C; alcuni utili 

teoremi sulle reti elettriche sono in Appendice D; i circuiti a singola costante di tempo sono 

in Appendice E; l’analisi nel dominio della variabile complessa s sono nell’Appendice F. 

Inoltre, sono presenti alcuni problemi di analisi di circuiti all’inizio della sezione dei pro-

blemi relativi al Capitolo 1. Non sono necessarie conoscenze pregresse di fisica dei semicon-

duttori. Tutta la fisica dei dispositivi necessaria è trattata nel testo e l’Appendice A fornisce 

una breve descrizione dei processi di fabbricazione dei circuiti integrati. Le appendici fanno 

parte del materiale digitale accessibile online.

Enfasi sulla progettazione

La nostra filosofia si basa sull’assunto che la progettazione di circuiti viene condotta più effi-

cacemente se vengono evidenziati i compromessi (trade off ) che derivano dalla scelta di una 

particolare configurazione circuitale o dalla selezione di determinati valori dei componenti 

per un’assegnata configurazione. In questa edizione è stata data maggiore enfasi alla proget-

tazione includendo più esempi, esercizi e problemi di fine capitolo. Gli esercizi e problemi 

proposti a fine capitolo che sono considerati “orientati alla progettazione” sono indicati con 

una D. Vengono inclusi nell’Appendice B numerosi esempi di progetti e simulazioni, enfatiz-

zando l’uso del più potente tra gli aiuti alla progettazione: SPICE.

Novità della quinta edizione

Sebbene sia stata conservata la filosofia e l’approccio pedagogico delle prime quattro edi-

zioni, sono stati apportati diversi cambiamenti, sia nell’organizzazione che negli argomenti 

trattati. Il nostro obiettivo nell’effettuare questi cambiamenti è di aumentare la modularità e 

quindi la flessibilità per i docenti. Le modifiche nelle aree trattate sono necessarie a causa 

della continua introduzione di nuove tecnologie, che rendono più interessanti alcuni argo-

menti rispetto ad altri. Per questo stesso motivo è necessario che gli esercizi e gli esempi 
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siano aggiornati per stare al passo con le ultime novità dei CI (ad esempio alcuni problemi utilizzano para-

metri tipici di processi CMOS a 65 nm). Questi aggiornamenti assicurano che gli studenti acquisiscano una 

prospettiva legata alla tecnologia attuale.

Vengono di seguito elencate le modifiche dettagliate che sono state effettuate in questa edizione:

 1. Nuovi problemi alla fine dei capitoli. Il numero di problemi alla fine dei capitoli è stato 

aumentato.

 2. Note di approfondimento storico. Queste nuove sezioni aggiungono interessanti prospettive sto-

riche e applicative, gran parte di esse riguardano le invenzioni chiave nell’ingegneria dei circuiti.

 3. Flessibilità nella presentazione del MOSFET e del BJT. Due brevi capitoli presentano in modo 

parallelo il BJT (Capitolo 4) e il MOSFET (Capitolo 5). Questi capitoli sono incentrati sulla strut-

tura fisica, sulle caratteristiche corrente-tensione e sulle applicazioni nei circuiti dc dei dispositivi. 

L’ordine con cui affrontare tali capitoli è a discrezione del docente, in quanto sono stati scritti per 

essere completamente indipendenti tra di loro.

 4. Trattazione unificata degli amplificatori a transistori. Il cuore del primo corso di elettronica è 

lo studio degli amplificatori a transistori. La quinta edizione affronta l’argomento in modo nuovo: 

il nuovo Capitolo 6 tratta i principi alla base del funzionamento dei transistori come amplificatori e 

presenta i concetti di comportamento per piccolo segnale e modello. Seguono le classiche configu-

razioni di amplificatori a transistori, i metodi di polarizzazione ed esempi concreti di amplificatori a 

circuiti discreti. Questa presentazione enfatizza l’unità dei principi di base e permette un trattamento 

separato per i due tipi di dispositivi quando necessario. Fondamentalmente si è così in grado di con-

frontare i due dispositivi e comprendere quale siano le aree specifiche in cui possono essere applicati.

 5. Presentazione migliorata del cascoding. Il Capitolo 7, che tratta gli elementi costitutivi fon-

damentali degli amplificatori CI, è stato riscritto per migliorarne la comprensione. In particolare 

lo sviluppo del cascode, dell’amplificatore cascode e del generatore di corrente cascode sono ora 

molto più chiari.

 6. Presentazione migliorata della risposta alla frequenza. Pur mantenendo la trattazione della 

risposta alla frequenza in un unico capitolo, il Capitolo 9 è stato riscritto per migliorarne la com-

prensione, semplificando e chiarificando la presentazione dell’argomento.

 7. Studio semplificato della retroazione. Il capitolo sulla retroazione è stato riscritto per miglio-

rare la presentazione, semplificando e chiarendo questo fondamentale argomento.

 8. Trattamento aggiornato degli stadi di uscita e degli amplificatori. Sono state aggiornate le 

sezioni riguardanti i transistori di potenza MOS ed è stata aggiunta una nuova sezione sui sempre 

più importanti amplificatori di potenza in commutazione di classe D.

 9. Una trattazione moderna degli amplificatori operazionali. Sono stati mantenuti gli aspetti 

salienti della trattazione del classico amplificatore operazionale 741: riducendo lo spazio occupato 

da tale argomento si è fatto posto alla presentazione di alcune tecniche utilizzate nella progetta-

zione di amplificatori operazionali moderni.

10. Addizionale importanza a filtri e oscillatori nei circuiti integrati. Al Capitolo 13 è stato 

aggiunto un paragrafo riguardante i filtri a transconduttanza C, un popolare approccio ai filtri per 

la progettazione di circuiti integrati. Per fare posto a questo argomento, la trattazione degli ampli-

ficatori sfalsati è stata spostata nell’Appendice H. Al Capitolo 14 è stata aggiunta la trattazione 

degli oscillatori LC ad accoppiamento incrociato.

11. Trattazione organizzata e modernizzata dei circuiti integrati digitali. Sono stati apportati 

significativi miglioramenti alla breve ma comprensiva trattazione dei circuiti integrati digitali 

nella parte conclusiva del testo. Questi includono lo studio delle porte logiche CMOS (Capitolo 

15). Il materiale sulla tecnologia dei circuiti logici è stato spostato nel Capitolo 16. Questo capi-

tolo a struttura modulare riguarda alcuni concetti avanzati e specializzati. Dato che i bipolari ven-

gono raramente utilizzati nei dispositivi moderni, è stata ridotta la trattazione dell’ECL. In modo 

analogo, il BiCMOS è diventato un argomento di nicchia, quindi anche lo spazio dedicato a tale 

argomento è stato ridotto. Infine, è stato aggiunto un nuovo paragrafo che riguarda i sensori di 

immagini (Capitolo 17).

12. Confronto approfondito e utile tra MOPSFET e BJT. Tale confronto è ora incluso nell’Appen-

dice G.
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Materiale online

Per usufruire del materiale online è necessario registrarsi al sito www.edisesuniversita.it (vedi retro coper-

tina per maggiori informazioni); una volta attivato il libro nell’area riservata è possibile accedere alle 

appendici in formato digitale:

• Appendice A: Tecnologia di fabbricazione dei circuiti VLSI

• Appendice B:  Modelli SPICE ed esempi di simulazione e progettazione sviluppati utilizzando 

PSpice® e Multisim™

• Appendice C: Parametri delle reti a due porte

• Appendice D: Teoremi utili sulle reti elettriche

• Appendice E: Circuiti a singola costante di tempo

• Appendice F: Analisi nel dominio della frequenza complessa s: poli, zeri e diagrammi di Bode

• Appendice G: Confronto tra MOSFET e BJT

• Appendice H: Progettazione di amplificatori sfalsati

• Appendice I: Bibliografia

• Appendice J: Valori standard di resistenze e prefissi delle unità di misura

• Appendice K:  Valori tipici dei parametri di dispositivi integrati fabbricati in processi CMOS 

e bipolari

• Appendice L: Risposte a problemi selezionati

Esercizi e problemi di fine capitolo

Il libro contiene più di 475 esercizi. Le soluzioni degli esercizi sono date alla fine degli stessi in modo 

che lo studente possa verificare subito se ha compreso gli argomenti trattati. La soluzione degli esercizi 

dovrebbe essere di aiuto per il lettore per valutare l’apprendimento del materiale proposto. Oltre agli eser-

cizi ci sono più di 1400 problemi di fine capitolo, dei quali, circa il 65% sono nuovi o modificati per questa 

edizione. I problemi sono riferiti ai singoli paragrafi ed il loro grado di difficoltà è indicato con un sistema 

di classificazione: i problemi difficili sono contrassegnati con un asterisco (*); i problemi più difficili sono 

contrassegnati con due asterischi (**); i problemi molto difficili (e/o molto lunghi da risolvere) sono con-

trassegnati con tre asterischi (***). Dobbiamo ammettere, comunque, che questa classificazione non è 

rigorosa. Le nostre valutazioni sono, senza dubbio, soggettive (e dipendenti dall’umore del momento!) e 

legate al momento in cui un particolare problema è stato creato. Le risposte a circa la metà dei problemi 

sono fornite nell’Appendice L.

Come nelle precedenti edizioni, sono inclusi molti esempi. Gli esempi e molti dei problemi ed esercizi, 

sono basati su circuiti reali e anticipano le applicazioni che si incontrano nella progettazione di circuiti con-

creti. Questa edizione mantiene, per molti esempi, l’uso di numerare i passaggi per arrivare alla soluzione 

nelle figure, ricreando le dinamiche utilizzate in classe.

Linee guida per il lettore

La Parte I, Dispositivi e circuiti fondamentali include gli argomenti fondamentali per lo studio dei circuiti 

elettronici.

Capitolo 1. Il libro si apre con una introduzione dei concetti base dell’elettronica. Vengono presentati i 

segnali, il loro spettro di frequenza e le loro forme analogiche e digitali. Vengono introdotti gli amplificatori 

come blocchi elementari e ne vengono studiati i vari tipi e modelli. Vengono, inoltre, stabilite la terminolo-

gia e le convenzioni utilizzate in tutto il testo.

La seconda parte del capitolo fornisce una panoramica sui semiconduttori sufficiente per comprendere il 

funzionamento dei diodi e dei transistori nei capitoli successivi Questo materiale è particolarmente impor-

tante per gli studenti che non hanno ancora affrontato la fisica dei dispositivi elettronici. Anche chi ha già 

affrontato tali argomenti può trovare utile un ripasso.

http://www.edisesuniversita.it/
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Capitolo 2. Il Capitolo 2 tratta gli amplificatori operazionali (op amp), le loro caratteristiche ai termi-

nali, alcune semplici applicazioni e limitazioni pratiche. Si è scelto di discutere gli op amp come blocchi 

circuitali elementari a questo primo stadio semplicemente perché sono facili da trattare e perché lo studente 

può realizzare con essi circuiti con funzioni non banali con relativa facilità e compiutezza. Abbiamo trovato 

questo approccio estremamente motivante per lo studente. Va puntualizzato, comunque, che tutto o parte di 

questo capitolo può essere saltato e studiato successivamente (per esempio insieme al Capitolo 8, Capitolo 

10 e/o Capitolo 12) senza perdita di continuità.

Capitolo 3. Il Capitolo 3 è dedicato allo studio del primo dispositivo elettronico, il diodo. Vengono 

presentate le caratteristiche ai terminali del diodo, i modelli circuitali usati per rappresentarlo e i circuiti 

applicativi fondamentali. Alcune delle applicazioni (ad esempio, Paragrafo 3.6) possono essere tralasciate. 

La descrizione dei tipi speciali di diodi (Paragrafo 3.7) può essere assegnata come lettura per gli studenti.

Capitoli 4 e 5. La base dei circuiti elettronici è data dallo studio dei due tipi di transistore attualmente in 

uso: il transistore bipolare nel Capitolo 4 e il transistore MOS nel Capitolo 5. I due capitoli sono comple-

tamente indipendenti l’uno dall’altro così che possano essere trattati nell’ordine desiderato. Oltretutto 

presentano la stessa struttura così da permettere un semplice e rapido confronto tra i due tipi di transistore.

Ognuno dei due capitoli inizia con lo studio della struttura del dispositivo e del suo funzionamento fisico, 

arrivando alla descrizione delle sue caratteristiche ai terminali. Successivamente, per fare acquisire al let-

tore un elevato grado di familiarità con il transistore come elemento circuitale, vengono presentati un gran 

numero di esempi di circuiti che utilizzano il dispositivo. L’ultimo paragrafo dei Capitoli 4 e 5 tratta gli 

effetti di secondo ordine: questo materiale è incluso per completezza ma può essere tralasciato.

Capitolo 6. Il cuore del primo corso di elettronica è lo studio degli amplificatori a transistori. Il Capitolo 

6 presenta una trattazione unificata del soggetto. Comincia con i principi di base che permettono ai tran-

sistori (di qualsiasi tipo) di funzionare come amplificatori e procede all’introduzione del comportamento 

per piccolo segnale e della modellazione. Seguono le classiche configurazioni di amplificatori a transistori, 

i metodi di polarizzazione ed esempi concreti di amplificatori a circuiti discreti. Questa presentazione 

enfatizza l’unità dei principi di base e permette un trattamento separato per i due tipi di dispositivi quando 

necessario. Fondamentalmente si è così in grado di confrontare i due dispositivi e comprendere quale siano 

le aree specifiche in cui possono essere applicati.

Dopo lo studio della Parte I, lo studente è pronto ad affrontare gli amplificatori nei circuiti integrati nella 

Parte II o circuiti integrali digitali nella Parte IV.

La Parte II, Amplificatori per circuiti integrati, è incentrata allo studio di circuiti amplificatori che pos-

sono essere fabbricati nei circuiti integrati. I quattro capitolo che ne fanno parte costituiscono una tratta-

zione coerente sulla progettazione di amplificatori per circuiti integrati.

MOS e bipolari. Nella Parte II vengono presentati parallelamente circuiti MOS e bipolari. Dato che i 

MOSFET sono i dispositivi dominanti, i circuiti che li riguardano vengono trattati per primi. I circuiti bipo-

lari vengono trattati con lo stesso dettaglio ma più brevemente.

Capitolo 7. Il Capitolo 7 apre con una breve introduzione alla filosofia nella progettazione di CI e segue 

con la presentazione delle parti fondamentali utilizzate nella progettazione di circuiti amplificatori IC: 

specchi di corrente, generatori di corrente, celle di guadagno e amplificatori cascode.

Capitolo 8. Il Capitolo 8 tratta la parte più importante nel circuito CI, gli amplificatori differenziali. Gli 

amplificatori multistadio vengono trattati nella parte conclusiva di questo capitolo.

Capitolo 9. Il Capitolo 9 presenta una trattazione comprensiva della risposta degli amplificatori alla 

frequenza, un argomento importante. I Paragrafi 9.1, 9.2 e 9.3 contengono il materiale fondamentale; il 

Paragrafo 9.4 approfondisce l’utilizzo di alcuni importanti strumenti per l’analisi della risposta in alta fre-

quenza; infine i Paragrafi da 9.5 a 9.8 presentano analisi di risposte alla frequenza di varie configurazioni di 

amplificatori, che possono essere affrontate quando e se necessario.

Capitolo 10. Il soggetto del Capitolo 10 è la retroazione (feedback), un argomento fondamentale. 

Vengono affrontati sia la teoria che le applicazioni della retroazione negativa nella progettazione pratica di 

amplificatori con retroazione. Vengono anche discussi i problemi di stabilità relativi agli amplificatori con 

retroazione e viene discussa la compensazione in frequenza.

La Parte III, Circuiti integrati analogici, consiste di quattro capitoli che coprono alcune applicazioni 

specializzate del materiale presentato nelle prime due parti.
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Capitolo 11. Nel Capitolo 11 si passa dal trattamento di amplificatori per piccoli segnali ad amplifica-

tori che devono gestire grandi segnali e grandi potenze. Vengono studiate le diverse classi di amplificatori 

(A, B e AB) e la loro realizzazione nei circuiti bipolari e CMOS. Vengono anche trattati i BJT di potenza, i 

MOSFET di potenza e alcuni tipici amplificatori di potenza in CI. Viene presentato un breve studio dell’am-

plificatore di classe D, sempre più utilizzato.

Capitolo 12. Il Capitolo 12 unisce gli argomenti trattati nei Capitoli 7 e 11 nella progettazione degli 

amplificatori operazionali. Vengono trattati amplificatori operazionali di tipo CMOS e bipolari. Nel secondo 

caso, oltre alla trattazione del classico circuito 741, vengono presentati tecniche moderne per lo sviluppo di 

op-amp a bassa tensione (Paragrafo 12.4).

Capitolo 13. Il Capitolo 13 tratta i filtri, che sono un elemento importante nei sistemi di comunicazione 

e degli strumenti. La trattazione è comprensiva, orientata alla progettazione e il materiale presente dovrebbe 

consentire allo studente di effettuare una progettazione completa di un filtro, dalle caratteristiche alla realiz-

zazione di un circuito completo. Sono incluse numerose tabelle utili alla progettazione.

Capitolo 14. Il Capitolo 14 tratta i circuiti utilizzati nella generazione di segnali con diverse forme 

d’onda: sinusoidali, quadrate e triangolari. Vengono anche presentati circuiti per ottenere forme d’onda non 

lineari.

La Parte IV, Circuiti integrati digitali, offre una trattazione breve ma comprensiva e sufficientemente 

dettagliata della progettazione di circuiti integrati digitali. La comprensione di questa parte richiede una 

profonda conoscenza del materiale riguardante il MOSFET (Capitolo 5): per questo è possibile trattare que-

sta parte subito dopo il Capitolo 5. Da notare che per la parte finale del Capitolo 16 è richiesta la conoscenza 

del BJT (Capitolo 4) e delle capacità interne del MOSFET (Paragrafo 9.2.2).

Capitolo 15. Il Capitolo 15 è la parte fondamentale della Parte IV, e si apre con la trattazione di circuiti 

logici CMOS. Segue un dettagliato studio degli invertitori logici digitali, concentrandosi sull’invertitore 

CMOS: la sua progettazione e le sue caratteristiche statiche e dinamiche. La dimensione dei transistori e la 

dissipazione della potenza completano gli argomenti del Capitolo 15. Il materiale presente in tale capitolo 

è il minimo per imparare qualcosa di significativo sui circuiti digitali.

Capitolo 16. Il Capitolo 16 ha una struttura modulare e tratta sei argomenti in qualche modo avanzati. 

Viene presentata la legge di Moore e l’avanzamento tecnologico che ha reso possibile la fabbricazione di 

chip con miliardi di transistori. Segue una presentazione delle tecnologie CI digitali e i metodi per proget-

tare possibili CI molto complessi. Vengono infine presentati quattro differenti circuiti logici. Solo l’ultimo 

di questi include transistori bipolari.

Capitolo 17. I circuiti digitali possono essere suddivisi sommariamente in circuiti logici e circuiti di 

memoria; il Capitolo 17 tratta questi ultimi.

Appendici. Le dodici appendici contengono molto materiale supplementare di sussidio per il lettore. 

In particolare l’Appendice A fornisce una coincisa introduzione sulla tecnologia di fabbricazione dei CI, 

incluso il layout dei circuiti. L’Appendice B fornisce modelli SPICE, così come moltissimi esempi di pro-

gettazione e simulazione in PSpice® e Multisim™.

Adel S. Sedra

Kenneth C. (KC) Smith

Waterloo, Ontario, Canada

Settembre 2015



PREFAZIONE ALL’EDIZIONE ITALIANA

Il testo di Adel S. Sedra e Kenneth C. Smith è ormai un consolidato riferimento nel panorama 

internazionale dei testi di Elettronica ed è da tempo ampiamente diffuso ed apprezzato anche 

in Italia. In particolare, uno dei principali pregi dell’opera consiste nell’aver saputo coniugare 

la trattazione dei circuiti elettronici elementari di base con i riferimenti più attuali tratti dal 

contesto dei moderni circuiti integrati. L’attenzione verso gli aspetti progettuali, i numero-

sissimi esercizi e problemi proposti, il materiale di supporto disponibile sul sito dedicato e la 

veste grafica esemplare corredano il tutto. Nel succedersi delle varie edizioni, se ne è apprez-

zata sempre più l’impostazione generale, la chiarezza e la completezza dell’esposizione dei 

vari argomenti, frutto della grande esperienza degli autori e del contributo di numerosissimi 

revisori.

Questa edizione, in particolare, è caratterizzata da una sostanziale riorganizzazione dei 

contenuti in modo da realizzare un’impostazione modulare degli argomenti, con capitoli 

spesso autoconsistenti. Ciò rende il testo adatto alle esigenze didattiche più varie, in quanto i 

vari capitoli possono essere assemblati rispettando gli assetti didattici e le tradizioni della sin-

gola sede universitaria. Il testo copre argomenti che tipicamente trovano spazio in più corsi di 

elettronica analogica e digitale di base. Per una descrizione dettagliata dell’organizzazione e 

delle innovazioni apportate in questa edizione si rimanda alla prefazione degli autori.

L’impegno di questo lavoro di traduzione, sostenuto con competenza e dedizione dai tanti 

colleghi di università di tutta Italia, trova la sua giustificazione nell’intento di promuovere 

una ancor più capillare diffusione del testo, favorendo anche una maggiore condivisione degli 

argomenti di base dell’elettronica fra le varie sedi universitarie, cosa auspicabile anche ai fini 

di una più agevole mobilità degli studenti senza residui debiti formativi.

Il principio ispiratore di tutto il lavoro è stato quello di rendere una traduzione quanto più 

possibile aderente al testo originale cercando, al contempo, di mantenere l’esposizione line-

are e fluida come quella di un testo in madrelingua. Si è deciso, tuttavia, di evitare di tradurre 

quei termini inglesi entrati ormai nell’uso corrente e peraltro quasi intraducibili in italiano 

senza ricorrere a forzature.

L’impegno dei tanti illustri colleghi di università diverse che hanno partecipato al lavoro 

di traduzione è stato spesso anche occasione di interessanti confronti, di approfondimenti 

e, in generale, di arricchimento culturale per ciascuno, cosa che ha contribuito, a volte, ad 

alleviare la fatica.

L’augurio e la speranza è che questo sforzo trovi la sua ricompensa nell’apprezzamento 

di quanti, trovandosi ad affrontare lo studio dell’Elettronica, sceglieranno questo testo e nei 

vantaggi che ne potranno trarre nel cimentarsi con una materia tanto affascinante quanto 

vasta e complessa.

Francesco Corsi
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OBIETTIVI DI APPRENDIMENTO

 1. La struttura fisica ed il funzionamento di un transistore bipolare.

 2. Come la tensione tra due terminali del transistore controlla la corrente che fluisce 

nel terzo terminale, e le equazioni che descrivono questa relazione tensione-

corrente.

 3. Come si analizzano e progettano circuiti che contengono transistori bipolari, 

resistori e sorgenti dc.

Introduzione

Avendo studiato il diodo a giunzione, ossia il componente più basilare a due terminali, rivol-
giamo ora la nostra attenzione ai componenti a semiconduttore a tre terminali.

I dispositivi a tre terminali sono molto più utili di quelli a due terminali, come i diodi 
studiati nel Capitolo 3, perché possono essere utilizzati in una moltitudine di applicazioni che 
vanno dall’amplificazione dei segnali al progetto dei circuiti logici e delle memorie digitali. 
Il principio base del loro funzionamento consiste nell’utilizzo di una tensione applicata tra 
due terminali per controllare la corrente che fluisce nel terzo terminale. In questo modo, un 
dispositivo a tre terminali può essere utilizzato per realizzare un generatore controllato, il 
quale, come anticipato nel Capitolo 1, costituisce la base per il progetto degli amplificatori. 
Oppure, al limite, il segnale di controllo può essere utilizzato per far variare la corrente nel 
terzo terminale da zero ad un valore grande, così che il dispositivo si comporti come un inter-
ruttore. L’interruttore costituisce la base per la realizzazione dell’invertitore logico, l’elemen-
to fondamentale dei circuiti digitali.

Ci sono due tipi principali di componenti a semiconduttore a tre terminali: il transistore 
bipolare a giunzione, che verrà studiato in questo capitolo, e il transistore metallo-ossido-se-
miconduttore ad effetto di campo, che verrà studiato nel capitolo 5.

L’invenzione del BJT nel 1948 presso i Bell Telephone Laboratories segna l’inizio dell’e-
ra dei circuiti a stato solido. L’effetto fu non soltanto la sostituzione dei tubi a vuoto con i 
transistori in apparecchi radio e televisori ma piuttosto l’esplosione della rivoluzione elettro-
nica che ha portato a fondamentali cambiamenti nel modo di lavorare, divertirsi e, infine, di 
vivere. L’invenzione del transistore ha anche permesso l’inizio dell’era della tecnologia in-
formatica e l’emergenza dell’economia basata sulla conoscenza.

Il transistore bipolare ha costituito per circa tre decadi il dispositivo di elezione nel pro-
getto dei circuiti sia discreti che integrati. Sebbene il MOSFET fosse conosciuto da molto 
tempo, è stato solo a partire dagli anni ’70 e ’80 che esso è diventato un serio concorrente del 
BJT. Dal 2015, il MOSFET è senza dubbio il dispositivo elettronico più largamente utilizza-
to e la tecnologia CMOS è la tecnologia dominante nel progetto dei circuiti integrati. 
Ciononostante, il BJT rimane un dispositivo rilevante e insuperato in alcuni campi di appli-
cazione.

La popolarità del BJT è rimasta alta nel progetto dei circuiti a componenti discreti, in cui 
viene utilizzato insieme ad altri componenti discreti quali resistenze e capacità per realizzare 
circuiti montati su schede a circuito stampato (Printed-Circuit Boards, PCB). È da notare la 
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disponibilità di una larghissima selezione di tipi di BJT che soddisfano le esigenze pratica-
mente di ogni applicazione. Il BJT inoltre è ancora il dispositivo preferito in applicazioni 
circuitali analogiche, sia integrate che discrete, che richiedono elevate prestazioni. Ciò è vero 
in particolare in circuiti a frequenze molto alte e ad alta velocità. È tuttora in uso una famiglia 
di circuiti logici digitali ad altissima velocità, basata sul transistore bipolare, detta logica ad 
emettitori accoppiati (ECL, Emitter-Coupled Logic, Capitolo 16). Infine, i transistori bipola-
ri possono essere combinati con i MOSFET per realizzare circuiti innovativi che uniscono 
l’elevata impedenza di ingresso e la bassa dissipazione di potenza dei MOSFET con la capa-
cità dei transistori bipolari di funzionare a frequenze molto alte con correnti molto alte. La 
tecnologia che ne risulta è nota come BiMOS o BiCMOS e sta trovando aree di applicazione 
sempre più vaste (si vedano Capitoli 7 e 16).

In questo capitolo cominceremo con una semplice descrizione del funzionamento fisico 
del BJT. Sebbene semplificata, tale descrizione fisica fornisce un notevole approfondimento 
sulle prestazioni del transistore come elemento circuitale. Successivamente passeremo velo-
cemente dalla descrizione del flusso di corrente in termini di elettroni e lacune allo studio 
delle caratteristiche ai terminali del transistore. Saranno anche sviluppati i modelli circuitali 
per i diversi modi di funzionamento del transistore utilizzati nell’analisi e nel progetto dei 
circuiti. L’obiettivo principale di questo capitolo consiste nello sviluppare nel lettore un ele-
vato grado di familiarità con il BJT. Quindi, pone le basi per l’uso del BJT nel progetto di 
amplificatori (Capitolo 6).

4.1 Struttura del dispositivo e funzionamento fisico

4.1.1 Struttura semplificata e modi di funzionamento

La Fig. 4.1 mostra la struttura semplificata di un BJT. Una struttura realistica sarà mostrata in 
seguito (si veda anche l’Appendice A per quel che riguarda la tecnologia di fabbricazione).

Come mostrato in Fig. 4.1, il BJT è formato da tre regioni di semiconduttore: la regione 
di emettitore (di tipo n), la regione di base (di tipo p) e la regione di collettore (di tipo n). Un 
tale tipo di BJT è detto transistore npn. Un altro tipo di transistore, duale rispetto al tipo npn 
come mostrato in Fig. 4.2, è caratterizzato dall’emettitore di tipo p, la base di tipo n ed il 
collettore di tipo p e viene pertanto chiamato transistore pnp.

Ognuna delle tre regioni di semiconduttore è collegata ad un terminale chiamato rispetti-
vamente emettitore (E), base (B) e collettore (C).

Il transistore è costituito da due giunzioni pn, la giunzione emettitore-base (EBJ) e la 
giunzione collettore-base (CBJ). A seconda delle condizioni di polarizzazione (diretta o in-
versa) di ognuna di queste giunzioni, si ottengono diversi modi o regioni di funzionamento 
del BJT, così come mostrato in Tabella 4.1. La regione attiva (o regione attiva diretta) è 
quella che si utilizza quando il transistore deve funzionare da amplificatore. Le applicazioni 
in commutazione (per. es. i circuiti logici) utilizzano sia la regione di interdizione che la 
regione di saturazione. Nella regione di interdizione, come suggerito dal nome, il flusso di 
corrente è pressoché nullo visto che le giunzioni sono entrambe polarizzate in inversa.

Come verrà mostrato fra poco, in un transistore bipolare il processo di conduzione della 
corrente è sostenuto da portatori di carica di entrambe le polarità, cioè elettroni e lacune, da 
cui il nome bipolare1.

1 Questo è diverso da quello che accade nei MOSFET, in cui la corrente è sostenuta da portatori di 
carica di un solo tipo, ovvero elettroni nei dispositivi a canale n, lacune nei dispositivi a canale p. Per 
questo motivo inizialmente i FET venivano talora definiti dispositivi unipolari.
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4.1.2 Funzionamento del transistore npn nella regione attiva

La regione attiva è la più importante delle tre regioni di funzionamento del BJT definite pri-
ma. Per questo motivo, cominciamo con l’esaminare il funzionamento fisico del transistore 
nella regione attiva.2 Questa situazione è illustrata nella Fig. 4.3 per il transistore npn. Due 
generatori di tensione esterni (rappresentati come batterie) vengono utilizzati per stabilire le 
condizioni di polarizzazione richieste per il funzionamento nella regione attiva. La tensione 
V

BE
 porta la base di tipo p ad un potenziale maggiore rispetto all’emettitore di tipo n, polariz-

zando quindi direttamente la giunzione emettitore-base. La tensione collettore-base V
CB

 porta 
il collettore di tipo n ad un potenziale più alto rispetto alla base di tipo p, polarizzando così 
inversamente la giunzione collettore-base.

2 Il materiale in questo paragrafo presume che il lettore abbia familiarità con il funzionamento della 
giunzione pn in polarizzazione diretta (Paragrafo 1.11).
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Figura 4.1 Struttura semplificata del transistore npn.
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Figura 4.2 Struttura semplificata del transistore pnp.

Tabella 4.1 Regioni di funzionamento del BJT

Regione EBJ CBJ

Interdizione Inversa Inversa

Attiva Diretta Inversa

Saturazione Diretta Diretta

Attiva inversa Inversa Diretta
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Flusso di corrente La polarizzazione diretta della giunzione emettitore-base darà origine 
a un flusso di corrente attraverso questa giunzione. La corrente sarà formata da due compo-
nenti: elettroni iniettati dall’emettitore verso la base e lacune iniettate dalla base verso l’emet-
titore. Come sarà chiaro tra poco, è assolutamente preferibile che la prima componente (elet-
troni dall’emettitore verso la base) sia molto più grande della seconda componente (lacune 
dalla base verso l’emettitore). Ciò si può ottenere realizzando il dispositivo con un emettitore 
molto drogato ed una base poco drogata, cioè il dispositivo viene progettato in modo da pre-
sentare un’elevata densità di elettroni nell’emettitore ed una bassa densità di lacune nella 
base.

La corrente che fluisce attraverso la giunzione emettitore-base costituirà la corrente di 
emettitore i

E
, come indicato in Fig. 4.3. La direzione di i

E
 è “uscente” dal terminale emettito-

re, quindi con direzione concorde con il flusso di cariche positive (lacune) ed opposta rispet-
to al flusso di cariche negative (elettroni), con la corrente i

E
 pari alla somma di queste due 

componenti. Comunque, dal momento che la componente di elettroni è molto più grande 
della componente di lacune, la corrente di emettitore sarà dominata dalla componente di 
elettroni.

Dallo studio nel Paragrafo 1.11 del flusso di corrente attraverso una giunzione pn polariz-
zata direttamente, sappiamo che l’ampiezza sia della componente di elettroni che di quella di 
lacune di i

E
 risulta proporzionale a evBE

V
T, dove v

BE
 è il potenziale diretto applicato attraverso 

la giunzione base-emettitore e V
T
 è la tensione termica (approssimativamente 25 mV a tem-

peratura ambiente).
Concentriamoci ora sulla prima componente di questa corrente, ovvero quella dovuta ad 

elettroni iniettati dall’emettitore entro la base. Questi elettroni saranno portatori minoritari 
nella regione di base, di tipo p. Poiché la loro concentrazione sarà massima dal lato della base 
prossimo all’emettitore, gli elettroni iniettati diffonderanno attraverso la base stessa verso il 
collettore. Nel loro viaggio attraverso la base, alcuni degli elettroni ricombineranno con lacu-
ne, che nella base sono portatori maggioritari. Tuttavia, poiché la base è tipicamente molto 
sottile e, come precedentemente indicato, debolmente drogata, la porzione di elettroni “per-
sa” attraverso questo processo di ricombinazione è molto ridotta. La maggior parte degli 
elettroni che diffondono raggiungerà il bordo della zona di svuotamento tra collettore e base. 
Poiché il collettore è polarizzato a potenziale positivo rispetto alla base (dalla tensione inver-
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Figura 4.3 Flusso di corrente in un transistore npn polarizzato in regione attiva. (Le componenti delle cor-
renti inverse dovute alla deriva dei portatori minoritari generati termicamente non sono mostrate).
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sa v
CB

), questi elettroni sopraggiunti saranno spinti attraverso la zona di svuotamento CBJ 
entro il collettore. Essi saranno quindi raccolti e costituiranno la corrente di collettore.

La corrente di collettore Dalla discussione precedente emerge che la corrente di collet-
tore è costituita dagli elettroni che raggiungono la regione di collettore. Il verso di questa 
corrente sarà opposto a quello del flusso degli elettroni, perciò entrante nel terminale di col-
lettore. La sua ampiezza sarà proporzionale a 

4.1 Device Structure and Physical Operation

CB , these successful electrons will be swept across the CBJ depletion

we see that the collector current is

by the electrons that reach the collector region. Its direction will be opposite to that of

the flow of electrons, and thus into the collector terminal. Its magnitude will be proportional

to e
v
BE

/V
T , thus

BE

of proportionality , as in the case of the diode, is called the

is a transistor parameter. We will have more to say about

An important observation to make here is that is independent of the value of CB. That

as long as the collector is positive with respect to the base, the electrons that reach the

of the base region will be swept into the collector and will register as collector

to Fig. 4.3 shows that the base current is composed of two

is due to the holes injected from the base region into

is proportional to BE . The second component

of base current, , is due to holes that have to be supplied by the external circuit in order

to replace the holes lost from the base through the recombination process. Because is

to the number of electrons injected into the base, it also will be proportional to
BE . Thus the total base current, , will be proportional to BE , and can be

as a fraction of the collector current as follows:

(4.2)

BE

is a transistor parameter.

is in the range 50 to 200, but it can be as high as 1000

is called the

of is highly influenced by two factors: the

of the base region, , and the relative dopings of the base region and the emitter

. To obtain a high is highly desirable since a gain

be thin (

. For modern integrated circuit fabrication technologies, is in the

a transistor must leave it, it can be seen

is equal to the sum of the collector current

; that is,

(4.4)

, quindi

4.1 Device Structure and Physical Operation

CB , these successful electrons will be swept across the CBJ depletion

we see that the collector current is

by the electrons that reach the collector region. Its direction will be opposite to that of

of electrons, and thus into the collector terminal. Its magnitude will be proportional

to BE , thus

iC = ISe
v
BE

/V
T (4.1)

of proportionality , as in the case of the diode, is called the

is a transistor parameter. We will have more to say about

An important observation to make here is that is independent of the value of CB. That

as long as the collector is positive with respect to the base, the electrons that reach the

of the base region will be swept into the collector and will register as collector

to Fig. 4.3 shows that the base current is composed of two

is due to the holes injected from the base region into

is proportional to BE . The second component

of base current, , is due to holes that have to be supplied by the external circuit in order

to replace the holes lost from the base through the recombination process. Because is

to the number of electrons injected into the base, it also will be proportional to
BE . Thus the total base current, , will be proportional to BE , and can be

as a fraction of the collector current as follows:

(4.2)

BE

is a transistor parameter.

is in the range 50 to 200, but it can be as high as 1000

is called the

of is highly influenced by two factors: the

of the base region, , and the relative dopings of the base region and the emitter

. To obtain a high is highly desirable since a gain

be thin (

. For modern integrated circuit fabrication technologies, is in the

a transistor must leave it, it can be seen

is equal to the sum of the collector current

; that is,

(4.4)

dove la costante di proporzionalità I
S
, come nel caso del diodo, è chiamata corrente di satu-

razione e rappresenta un parametro del transistore. Diremo di più su I
S
 a breve.

Un’importante osservazione da fare è che il valore di i
C
 è indipendente da v

CB
. Cioè, fino 

a quando il collettore è a un potenziale positivo rispetto alla base, gli elettroni che raggiungo-
no la giunzione collettore-base vengono spinti verso il collettore e diventano corrente di 
collettore.

La corrente di base Riferendoci alla Fig. 4.3, si può vedere che la corrente di base i
B
 è 

costituita da due componenti. La prima componente, i
B1

, è data dalle lacune iniettate dalla 
regione di base nella regione di emettitore e risulta proporzionale al fattore 
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 e può quindi essere espressa come frazione della corrente di colletto-
re i

C
 secondo l’equazione:
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in cui β è un parametro del transistore.
Nei transistori npn moderni, β può indicativamente variare tra 50 e 200, ma può arrivare 

fino a 1000 in dispositivi speciali. Per motivi che verranno chiariti in seguito, il parametro β 
viene chiamato guadagno di corrente a emettitore comune.

Dalla discussione precedente emerge che il valore di β è fortemente influenzato da due 
fattori: lo spessore della regione di base, W, e il livello relativo di drogaggio delle regioni di 
base e di emettitore, N

A
/N

D
. Per ottenere un alto valore di β (il che è altamente desiderabile, 

visto che β è un parametro di guadagno), la base deve essere sottile (W piccolo) e poco dro-
gata, mentre l’emettitore deve essere fortemente drogato (in modo da avere un rapporto 
N

A
/N

D
 ridotto). Nel caso delle tecnologie di fabbricazione di circuiti integrati moderne, W è 

di dimensioni nanometriche.

La corrente di emettitore Siccome la corrente entrante in un transistore deve essere 
uguale a quella uscente, dalla Fig. 4.3 si vede che la corrente di emettitore i

E
 è uguale alla 

somma della corrente di collettore i
C
 e della corrente di base i

B
, ovvero,
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is in the range 50 to 200, but it can be as high as 1000

is called the

of is highly influenced by two factors: the

of the base region, , and the relative dopings of the base region and the emitter

. To obtain a high is highly desirable since a gain

be thin (

. For modern integrated circuit fabrication technologies, is in the

a transistor must leave it, it can be seen

is equal to the sum of the collector current

; that is,

iE = iC + iB (4.4)
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Dalle Equazioni (4.2) e (4.4) si ricava che

Chapter 4 Transistors (BJTs)

of Eqs. (4.2) and (4.4) gives

iE =
β + 1

β
iC (4.5)

That is,

BE

we can express Eq. (4.5) in the form

is related to by

in Eq. (4.6) can be written

BE

we can use Eq. (4.8) to express in terms of , that is,

It can be seen from Eq. (4.8) that is a constant (for a particular transistor) that is less than

to unity. For instance, if an

in to very large changes in . This mathematical

of the same type may

of . For reasons that will become apparent later, is called the

of the physical operation of the BJT

be enhanced by considering the distribution of minority charge carriers in the base and

of the concentration of electrons in the base and

in the emitter of an in the active mode. Observe that since the

in the emitter, , is much higher than the doping concentration in the

, the concentration of electrons injected from emitter to base, , is much higher

of holes injected from the base to the emitter, . Both quantities

to BE , thus
BE

is the thermal-equilibrium value of the minority-carrier (electron) concentration in

is very thin, the concentration of excess electrons

to the usual exponential decay, as observed for the excess

in the emitter region). Furthermore, the reverse bias on the collector–base junction causes

of excess electrons at the collector side of the base to be zero. (Recall that

to diffuse through the base region toward the collector. This electron diffusion

Quindi,
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of Eqs. (4.2) and (4.4) gives

That is,

iE =
β + 1

β
ISe

v
BE

/V
T (4.6)

Alternatively, we can express Eq. (4.5) in the form

is related to by

in Eq. (4.6) can be written

BE

we can use Eq. (4.8) to express in terms of , that is,

It can be seen from Eq. (4.8) that is a constant (for a particular transistor) that is less than

to unity. For instance, if an

in to very large changes in . This mathematical

of the same type may

of . For reasons that will become apparent later, is called the

of the physical operation of the BJT

be enhanced by considering the distribution of minority charge carriers in the base and

of the concentration of electrons in the base and

in the emitter of an in the active mode. Observe that since the

in the emitter, , is much higher than the doping concentration in the

, the concentration of electrons injected from emitter to base, , is much higher

of holes injected from the base to the emitter, . Both quantities

to BE , thus
BE

is the thermal-equilibrium value of the minority-carrier (electron) concentration in

is very thin, the concentration of excess electrons

to the usual exponential decay, as observed for the excess

in the emitter region). Furthermore, the reverse bias on the collector–base junction causes

of excess electrons at the collector side of the base to be zero. (Recall that

to diffuse through the base region toward the collector. This electron diffusion

L’Eq. (4.5) può essere espressa nella forma alternativa
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of Eqs. (4.2) and (4.4) gives

BE

we can express Eq. (4.5) in the form

iC = αiE (4.7)

is related to by

in Eq. (4.6) can be written

BE

we can use Eq. (4.8) to express in terms of , that is,

It can be seen from Eq. (4.8) that is a constant (for a particular transistor) that is less than

to unity. For instance, if an

in to very large changes in . This mathematical

of the same type may

of . For reasons that will become apparent later, is called the

of the physical operation of the BJT

be enhanced by considering the distribution of minority charge carriers in the base and

of the concentration of electrons in the base and

in the emitter of an in the active mode. Observe that since the

in the emitter, , is much higher than the doping concentration in the

, the concentration of electrons injected from emitter to base, , is much higher

of holes injected from the base to the emitter, . Both quantities

to BE , thus
BE

is the thermal-equilibrium value of the minority-carrier (electron) concentration in

is very thin, the concentration of excess electrons

to the usual exponential decay, as observed for the excess

in the emitter region). Furthermore, the reverse bias on the collector–base junction causes

of excess electrons at the collector side of the base to be zero. (Recall that

to diffuse through the base region toward the collector. This electron diffusion

in cui la costante α è legata a β dalla relazione
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of Eqs. (4.2) and (4.4) gives

BE

we can express Eq. (4.5) in the form

is related to by

α =
β

β + 1
(4.8)

in Eq. (4.6) can be written

BE

we can use Eq. (4.8) to express in terms of , that is,

It can be seen from Eq. (4.8) that is a constant (for a particular transistor) that is less than

to unity. For instance, if an

in to very large changes in . This mathematical

of the same type may

of . For reasons that will become apparent later, is called the

of the physical operation of the BJT

be enhanced by considering the distribution of minority charge carriers in the base and

of the concentration of electrons in the base and

in the emitter of an in the active mode. Observe that since the

in the emitter, , is much higher than the doping concentration in the

, the concentration of electrons injected from emitter to base, , is much higher

of holes injected from the base to the emitter, . Both quantities

to BE , thus
BE

is the thermal-equilibrium value of the minority-carrier (electron) concentration in

is very thin, the concentration of excess electrons

to the usual exponential decay, as observed for the excess

in the emitter region). Furthermore, the reverse bias on the collector–base junction causes

of excess electrons at the collector side of the base to be zero. (Recall that

to diffuse through the base region toward the collector. This electron diffusion

Quindi, la corrente di emettitore nell’Eq. (4.6) può essere scritta come
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of Eqs. (4.2) and (4.4) gives

BE

we can express Eq. (4.5) in the form

is related to by

Thus the emitter current in Eq. (4.6) can be written

iE = (IS/α)e
v
BE

/V
T (4.9)

we can use Eq. (4.8) to express in terms of , that is,

It can be seen from Eq. (4.8) that is a constant (for a particular transistor) that is less than

to unity. For instance, if an

in to very large changes in . This mathematical

of the same type may

of . For reasons that will become apparent later, is called the

of the physical operation of the BJT

be enhanced by considering the distribution of minority charge carriers in the base and

of the concentration of electrons in the base and

in the emitter of an in the active mode. Observe that since the

in the emitter, , is much higher than the doping concentration in the

, the concentration of electrons injected from emitter to base, , is much higher

of holes injected from the base to the emitter, . Both quantities

to BE , thus
BE

is the thermal-equilibrium value of the minority-carrier (electron) concentration in

is very thin, the concentration of excess electrons

to the usual exponential decay, as observed for the excess

in the emitter region). Furthermore, the reverse bias on the collector–base junction causes

of excess electrons at the collector side of the base to be zero. (Recall that

to diffuse through the base region toward the collector. This electron diffusion

Infine, possiamo usare l’Eq.(4.8) per esprimere β in funzione di α, cioè 
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of Eqs. (4.2) and (4.4) gives

BE

we can express Eq. (4.5) in the form

is related to by

in Eq. (4.6) can be written

BE

we can use Eq. (4.8) to express in terms of , that is,

β =
α

1−α
(4.10)

It can be seen from Eq. (4.8) that is a constant (for a particular transistor) that is less than

to unity. For instance, if an

in to very large changes in . This mathematical

of the same type may

of . For reasons that will become apparent later, is called the

of the physical operation of the BJT

be enhanced by considering the distribution of minority charge carriers in the base and

of the concentration of electrons in the base and

in the emitter of an in the active mode. Observe that since the

in the emitter, , is much higher than the doping concentration in the

, the concentration of electrons injected from emitter to base, , is much higher

of holes injected from the base to the emitter, . Both quantities

to BE , thus
BE

is the thermal-equilibrium value of the minority-carrier (electron) concentration in

is very thin, the concentration of excess electrons

to the usual exponential decay, as observed for the excess

in the emitter region). Furthermore, the reverse bias on the collector–base junction causes

of excess electrons at the collector side of the base to be zero. (Recall that

to diffuse through the base region toward the collector. This electron diffusion

Dall’Eq. (4.8) si vede che α è una costante che (per un dato transistore) è inferiore, anche 
se molto vicina, all’unità. Ad esempio, se β = 100, allora α  0.99. L’Eq. (4.10) rivela un 
fatto importante: a piccoli cambiamenti di α corrispondono grandi variazioni di β. Questa 
osservazione matematica si manifesta fisicamente nel fatto che transistori dello stesso tipo 
possono avere valori di β molto diversi tra loro. Per motivi che verranno chiariti in seguito, il 
parametro α viene chiamato guadagno di corrente a base comune.

Distribuzione dei portatori minoritari La nostra comprensione del comportamento fisi-
co del BJT può essere migliorata considerando la distribuzione dei portatori di carica mino-
ritari nella base e nell’emettitore. La Fig. 4.4 mostra i profili della concentrazione di elettroni 
nella base e delle lacune nell’emettitore di un transistore npn funzionante in zona attiva. Si 
osservi che essendo la concentrazione di drogante nell’emettitore, N

D
, molto più alta della 

concentrazione di drogante nella base, N
A
, la concentrazione di elettroni iniettati dall’emetti-

tore nella base, n
p
(0), è molto più alta della concentrazione di lacune iniettate dalla base 

nell’emettitore, p
n
(0). Entrambe le quantità sono proporzionali a 
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of Eqs. (4.2) and (4.4) gives

BE

we can express Eq. (4.5) in the form

is related to by

in Eq. (4.6) can be written

BE

we can use Eq. (4.8) to express in terms of , that is,

It can be seen from Eq. (4.8) that is a constant (for a particular transistor) that is less than

to unity. For instance, if an

in to very large changes in . This mathematical

of the same type may

of . For reasons that will become apparent later, is called the

of the physical operation of the BJT

be enhanced by considering the distribution of minority charge carriers in the base and

of the concentration of electrons in the base and

in the emitter of an in the active mode. Observe that since the

in the emitter, , is much higher than the doping concentration in the

, the concentration of electrons injected from emitter to base, , is much higher

of holes injected from the base to the emitter, . Both quantities

to BE , thus

0 e
v
BE

/V
T

is the thermal-equilibrium value of the minority-carrier (electron) concentration in

is very thin, the concentration of excess electrons

to the usual exponential decay, as observed for the excess

in the emitter region). Furthermore, the reverse bias on the collector–base junction causes

of excess electrons at the collector side of the base to be zero. (Recall that

to diffuse through the base region toward the collector. This electron diffusion

, perciò
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of Eqs. (4.2) and (4.4) gives

BE

we can express Eq. (4.5) in the form

is related to by

in Eq. (4.6) can be written

BE

we can use Eq. (4.8) to express in terms of , that is,

It can be seen from Eq. (4.8) that is a constant (for a particular transistor) that is less than

to unity. For instance, if an

in to very large changes in . This mathematical

of the same type may

of . For reasons that will become apparent later, is called the

of the physical operation of the BJT

be enhanced by considering the distribution of minority charge carriers in the base and

of the concentration of electrons in the base and

in the emitter of an in the active mode. Observe that since the

in the emitter, , is much higher than the doping concentration in the

, the concentration of electrons injected from emitter to base, , is much higher

of holes injected from the base to the emitter, . Both quantities

to BE , thus

np(0) = np0 e
v
BE

/V
T (4.11)

where n is the thermal-equilibrium value of the minority-carrier (electron) concentration in

is very thin, the concentration of excess electrons

to the usual exponential decay, as observed for the excess

in the emitter region). Furthermore, the reverse bias on the collector–base junction causes

of excess electrons at the collector side of the base to be zero. (Recall that

to diffuse through the base region toward the collector. This electron diffusion

dove n
p0

 è il valore all’equilibrio termico della concentrazione dei portatori minoritari (elet-
troni) nella regione di base.

Si osservi inoltre che, dato che la base è molto sottile, la concentrazione dell’eccesso di 
elettroni diminuisce in modo approssimativamente lineare (diversamente dall’usuale decre-
scita esponenziale, osservabile ad esempio per l’eccesso di lacune nella regione di emettito-
re).

Inoltre, la polarizzazione inversa sulla giunzione collettore-base impone che la concentra-
zione degli elettroni in eccesso dal lato del collettore della base sia nulla. (Si ricordi che tutti 
gli elettroni che raggiungono quel punto sono spinti verso il collettore).

La forma discendente del profilo di concentrazione dei portatori minoritari (Fig. 4.4) 
provoca la diffusione attraverso la base, verso la regione di collettore, degli elettroni iniettati 
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nella base. Questa corrente di diffusione degli elettroni I
n
 è direttamente proporzionale alla 

pendenza del profilo di concentrazione,
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Figure 4.4 of minority-carrier concentrations in the base and in the emitter of an

in the active mode:
BE

0 and
CB
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is directly proportional to the slope of the straight-line concentration profile,

In = AEqDn

dnp(x)

dx

= AEqDn

(

−
np(0)

W

)

(4.12)

is the cross-sectional area of the base–emitter junction (in the direction perpendicular

to the page), is themagnitude of the electron charge, is the electron diffusivity in the base,

is the effective width of the base. Observe that the negative slope of theminority-carrier

in a negative current to left

of ), which corresponds to the usual convention, namely, opposite

to the direction of electron flow.

in the base region, though slight, causes the excess minority-carrier

to deviate from a straight line and take the slightly concave shape

by the broken line in Fig. 4.4. The slope of the concentration profile at the EBJ

is slightly higher than that at the CBJ, with the difference accounting for the small number of

in the base region through recombination.

we have the collector current , which will yield a negative value for

in the negative direction of the to left). Since

we will take this to be the positive direction of , we can drop the negative sign in Eq. (4.12).

we can thus express the collector

as

BE

is given by

qD

dove A
E
 rappresenta l’area trasversale della giunzione emettitore-base (nella direzione per-

pendicolare alla pagina), q rappresenta il modulo della carica dell’elettrone, D
n
 la diffusività 

degli elettroni nella base e W la lunghezza efficace della base. Si osservi che la pendenza 
negativa della concentrazione dei portatori minoritari produce una corrente I

n
 negativa attra-

verso la base, cioè, I
n
 scorre da destra verso sinistra (nel verso negativo dell’asse x), che 

corrisponde alla convenzione usuale, cioè opposta alla direzione del flusso di elettroni.
La ricombinazione nella regione di base, anche se minima, fa sì che il profilo della con-

centrazione dei portatori minoritari si allontani dalla linea retta e assuma la forma leggermen-
te concava indicata dalla linea tratteggiata in Fig. 4.4. La pendenza del profilo di concentra-
zione presso la EBJ è leggermente più alta rispetto alla pendenza presso la CBJ, la differenza 
dovuta al piccolo numero di elettroni perso nella base attraverso la ricombinazione.

Infine, abbiamo la corrente di collettore i
C
 = I

n
, che produrrà un valore negativo per i

C
, in 

accordo con il fatto che i
C
 fluisce nel verso negativo dell’asse x (cioè da destra verso sinistra). 

Dal momento però che prenderemo questo come verso positivo della corrente i
C
, il segno 

meno nell’Eq. (4.12) può essere eliminato. Con questa ipotesi e sostituendo al posto di n
p
(0) 

l’espressione data dall’Eq. (4.11), possiamo esprimere la corrente di collettore i
C
 come:
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is directly proportional to the slope of the straight-line concentration profile,

qD
dn

dx

qD (4.12)

is the cross-sectional area of the base–emitter junction (in the direction perpendicular

to the page), is themagnitude of the electron charge, is the electron diffusivity in the base,

is the effective width of the base. Observe that the negative slope of theminority-carrier

in a negative current to left

of ), which corresponds to the usual convention, namely, opposite

to the direction of electron flow.

in the base region, though slight, causes the excess minority-carrier

to deviate from a straight line and take the slightly concave shape

by the broken line in Fig. 4.4. The slope of the concentration profile at the EBJ

is slightly higher than that at the CBJ, with the difference accounting for the small number of

in the base region through recombination.

we have the collector current , which will yield a negative value for

in the negative direction of the to left). Since

we will take this to be the positive direction of , we can drop the negative sign in Eq. (4.12).

we can thus express the collector

as

iC = ISe
v
BE

/V
T

is given by

qD

in cui la corrente di saturazione I
S
 è data da
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is directly proportional to the slope of the straight-line concentration profile,

qD
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qD (4.12)

is the cross-sectional area of the base–emitter junction (in the direction perpendicular

to the page), is themagnitude of the electron charge, is the electron diffusivity in the base,

is the effective width of the base. Observe that the negative slope of theminority-carrier

in a negative current to left

of ), which corresponds to the usual convention, namely, opposite

to the direction of electron flow.

in the base region, though slight, causes the excess minority-carrier

to deviate from a straight line and take the slightly concave shape

by the broken line in Fig. 4.4. The slope of the concentration profile at the EBJ

is slightly higher than that at the CBJ, with the difference accounting for the small number of

in the base region through recombination.

we have the collector current , which will yield a negative value for

in the negative direction of the to left). Since

we will take this to be the positive direction of , we can drop the negative sign in Eq. (4.12).

we can thus express the collector

as

BE

is given by

IS = AEqDnnp0/W
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Figura 4.4 Profili di concentrazione dei portatori minoritari nella base e nell’emettitore di un transistore npn 
in regione attiva: v

BE
 > 0 e v

CB
 ≥ 0.



248 Capitolo 4 Il transistore bipolare a giunzione (BJT)

Sostituendo n
p0

 = n
i

2/N
A
, dove n

i
 rappresenta la concentrazione intrinseca dei portatori e N

A
 

rappresenta la concentrazione del drogante nella base, si può esprimere I
S
 come
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, where is the intrinsic carrier density and is the doping

in the base, we can express as

IS =
AEqDnn

2

i

NAW
(4.13)

is inversely proportional to the base width is directly

to the area of the EBJ. Typically is in the range of 10
12
A to 10

18
A (depending

on the size of the device). Because is proportional to , it is a strong function of temperature,

C rise in temperature. (For the dependence of on

to Eq. 1.26.)

is directly proportional to the junction area (i.e., the device size), it will also be

to as the . Two transistors that are identical except that one has an EBJ

of the other will have saturation currents with that same ratio (i.e., 2).

of BE a collector current twice that in the

is frequently employed in integrated-circuit design.

We have presented a first-ordermodel

of the in the active mode. Basically, the forward-bias voltage

BE an exponentially related current to flow in the collector terminal. The collector

is independent of the value of the collector voltage as long as the collector–base

CB 0. Thus in the activemode the collector terminal

as an ideal constant-current source where the value of the current is determined by

BE . The base current is a factor 1/ of the collector current, and the emitter current is equal

to the sum of the collector and base currents. Since is much smaller than

. More precisely, the collector current is a fraction of the emitter current, with

of transistor operation in the active mode can be represented by

in Fig. 4.5(a). Here, diode a scale current SE to

a current to BE to Eq. (4.9). The current of the

is equal to the collector current, is controlled by BE to

a restatement of Eq. (4.1). This model is in essence

a nonlinear voltage-controlled current source. It can be converted to the current-controlled

in Fig. 4.5(b) by expressing the current of the controlled source

as . Note that this model is also nonlinear because of the exponential relationship of the

BE . From this model we observe that if the

is used as a two-port network with the input port between E and B and the output

C and B (i.e., with B as a common terminal), then the current gain observed is

to . Thus is called the common-base current gain.

in Fig. 4.5(c) and (d),may be used to represent

of the BJT. The model of Fig. 4.5(c) is essentially a voltage-controlled current

is

, resulting in the BE in Eq. (4.3). By simply expressing the collector

as we obtain the current-controlled current-source model shown in Fig. 4.5(d).

we observe that if the transistor is used as a two-port network with the

B and E and the output port between C and E (i.e., with E as the common

is equal to . Thus is called the common-emitter

La corrente di saturazione I
S
 è inversamente proporzionale all’ampiezza della regione di 

base W ed è direttamente proporzionale all’area della EBJ. Tipicamente I
S
 assume valori 

nell’intervallo da 10–12 A a 10–18 A (a seconda delle dimensioni del dispositivo). Poiché I
S
 è 

proporzionale a n
i

2, essa è fortemente dipendente dalla temperatura, presentando approssima-
tivamente un raddoppio per ogni 5°C di aumento della temperatura. (Per la dipendenza di n

i

2 
dalla temperatura si veda l’Eq. 1.26).

Dal momento che I
S
 è direttamente proporzionale all’area di giunzione (cioè alle dimen-

sioni del dispositivo), essa viene anche detta corrente di scala. Due transistori identici, ec-
cetto che per uno l’area di giunzione è doppia rispetto all’altro, presenteranno correnti di 
saturazione nello stesso rapporto (cioè 2). Quindi a parità di v

BE
 il dispositivo più grande 

presenterà una corrente di collettore doppia rispetto a quella del dispositivo più piccolo. Nella 
progettazione dei circuiti integrati questa proprietà viene impiegata frequentemente.

Riepilogo e modelli circuitali equivalenti Abbiamo presentato un modello del primo 
ordine per il funzionamento del transistore npn nella zona attiva. Fondamentalmente, la ten-
sione di polarizzazione diretta della giunzione emettitore-base, v

BE
, provoca la nascita di una 

corrente i
C
, legata esponenzialmente alla v

BE
, che scorre nel terminale di collettore. La corren-

te di collettore i
C
 è indipendente dal valore della tensione di collettore fino a che la giunzione 

collettore-base è polarizzata inversamente, cioè, v
CB

  0. Quindi nella regione attiva il termi-
nale di collettore si comporta come un generatore ideale di corrente costante con il valore 
della corrente determinato dalla v

BE
. La corrente di base i

B
 è una frazione 1/β della corrente 

di collettore, e la corrente di emettitore è pari alla somma delle correnti di base e di collettore. 
Dal momento che i

B
 è molto più piccola di i

C
 (cioè β  1), i

E
  i

C
. Più precisamente, la cor-

rente di collettore è una frazione α della corrente di emettitore, con α più piccolo dell’unità, 
ma molto prossimo ad essa.

Il modello del primo ordine del funzionamento del transistore nella regione attiva diretta 
può essere rappresentato dal circuito equivalente mostrato nella Fig. 4.5(a). Il diodo D

E
 ha 

una corrente di scala I
SE

 uguale a (I
S
 /α) e fornisce quindi una corrente i

E
 legata alla v

BE
 secon-

do l’Eq. (4.9). La corrente del generatore controllato, che è uguale alla corrente di collettore, 
è controllata da v

BE
 secondo la relazione esponenziale indicata, una riaffermazione dell’Eq. 

(4.1). Questo modello è essenzialmente un generatore di corrente non lineare controllato in 
tensione. Esso può essere convertito nel modello con generatore di corrente controllato in 
corrente, mostrato in Fig. 4.5(b), esprimendo la corrente del generatore controllato come αi

E
. 

Si noti che anche questo modello è non lineare a causa della relazione esponenziale che lega 
la corrente i

E
, che attraversa il diodo D

E
, alla tensione v

BE
. Da questo modello si osserva che, 

se il transistore viene visto come una rete a due porte, con la porta di ingresso tra E e B e la 
porta di uscita tra C e B (cioè con B come terminale comune), il guadagno di corrente che si 
osserva è uguale ad α. Per questo α viene chiamato guadagno di corrente a base comune.

Altri due modelli circuitali equivalenti che possono essere usati per descrivere il funzio-
namento del BJT sono mostrati in Fig. 4.5(c) e (d). Il modello in Fig. 4.5(c) è essenzialmente 
un generatore di corrente controllato in tensione. In questo modello il diodo D

E
 conduce la 

corrente di base, quindi la sua corrente di scala è I
S 
/β e la relazione i

B
 – v

BE
 risulta quella data 

nell’Eq. (4.3). Scrivendo invece la corrente di collettore come βi
B
, si ottiene il modello con il 

generatore di corrente controllato in corrente riportato nella Fig. 4.5(d). Da quest’ultimo 
possiamo osservare che, se il transistore viene usato come una rete a due porte, con la porta 
di ingresso tra B ed E e la porta di uscita tra C ed E (cioè, con E come terminale comune), 
allora il guadagno di corrente osservato è proprio β. È per questo che β viene chiamato gua-
dagno di corrente a emettitore comune.
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Esempio 4.1

Un transistore npn con I
S
 = 10–15 A e β = 100 è connesso nel modo seguente: l’emettitore è a massa, la base 

è alimentata con un generatore di corrente costante che fornisce una corrente dc di 10 A e il collettore è 
collegato a una tensione di alimentazione da 5 V attraverso un resistore R

C
 da 3 k . Assumendo che il tran-

sistore lavori in regione attiva diretta, si determini il valore di V
BE

 e V
CE

. Si utilizzino questi valori per veri-
ficare l’assunzione di funzionamento in regione attiva diretta. Quindi si sostituisca il generatore di corrente 
con un resistore connesso tra la base e la tensione di alimentazione da 5 V. Quale valore di resistenza è ne-
cessario per ottenere le stesse condizioni operative precedenti?

Infine, va sottolineato che i modelli riportati in Fig. 4.5 sono validi per qualunque valore 
positivo di v

BE
. Vale a dire che, a differenza dei modelli che discuteremo nel Paragrafo 4.5, in 

questo caso non sono fatte ipotesi limitative sul valore di v
BE

, motivo per cui questi modelli 
sono chiamati modelli per grandi segnali.

Figura 4.5 Modelli circuitali equivalenti per grandi segnali del transistore npn in regione attiva diretta.
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Esempio 4.1 continua

Soluzione

Se il transistore lavora in regione attiva, può essere rappresentato da uno dei quattro modelli circuitali equiva-
lenti mostrati nella Fig. 4.5. Visto che l’emettitore è a massa, è conveniente usare il modello in Fig. 4.5(c) o 
quello in Fig. 4.5(d). Siccome la corrente di base è nota, il modello in Fig. 4.5(d) risulta il più adatto.

La Fig. 4.6(a) mostra il circuito risultate dall’utilizzo del modello equivalente riportato in Fig. 4.5(d). Si 
può determinare V

BE
 dalla caratteristica esponenziale di D

B
 nel modo seguente:

Chapter 4 Transistors (BJTs)

If the transistor is operating in the active mode, it can be represented by one of the four possible

in Fig. 4.5. Because the emitter is grounded, either themodel in Fig. 4.5(c)

or that in Fig. 4.5(d) would be suitable. Since we know the base current , the model of Fig. 4.5(d) is the

BE

C 

5V

BE CE

5V

Figure 4.6

as described with the transistor represented by the model of Fig. 4.5(d).

We can determine
BE

of as follows:

V
BE

= V
T
ln

I
B

I
S
/β

= 25 ln

(

10× 10
−6

10
−17

)

= 690 mV = 0.69 V

we determine the value of
CE

CE CC

10 10 10 1 mA

Quindi, si ricava il valore di V
CE

 dall’equazione:

Chapter 4 Transistors (BJTs)

If the transistor is operating in the active mode, it can be represented by one of the four possible

in Fig. 4.5. Because the emitter is grounded, either themodel in Fig. 4.5(c)

or that in Fig. 4.5(d) would be suitable. Since we know the base current , the model of Fig. 4.5(d) is the

BE

C 

5V

BE CE

5V

Figure 4.6

as described with the transistor represented by the model of Fig. 4.5(d).

We can determine
BE

of as follows:

BE
ln

25 ln
10 10

10
17

mV

we determine the value of
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Chapter 4 Transistors (BJTs)

If the transistor is operating in the active mode, it can be represented by one of the four possible

in Fig. 4.5. Because the emitter is grounded, either themodel in Fig. 4.5(c)

or that in Fig. 4.5(d) would be suitable. Since we know the base current , the model of Fig. 4.5(d) is the

BE

C 

5V

BE CE

5V

Figure 4.6

as described with the transistor represented by the model of Fig. 4.5(d).

We can determine
BE

of as follows:

BE
ln

25 ln
10 10

10
17

mV

we determine the value of
CE

CE CC

I
C

= βI
B
= 100× 10× 10

−6
= 10

−3
A = 1 mA

Di conseguenza si ottiene

VBEV VCEVV

ICIIIBI

E

CB

DB

RC
RB

VCC VV 5V

bIBI

(b)

VBEV VCVV ECC

ICIIIBI

E

CB

DB

RC 3 k

VCC VV 5V

10 A

bIBI

(a)

Figura 4.6 Circuiti per l’Esempio 4.1.
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4.1 Device Structure and Physical Operation

VCE = 5− 3× 1= +2 V

at 2 V is higher than at 0.69 V, the transistor is indeed operating in the active mode.

A current source with a resistance to the 5-V dc

CC , as in Fig. 4.6(b), the value of be

CC BE

10

EXERCISES

an BE V at 1 mA. Find BE at mA and 10 mA.

V; 0.76 V

of a certain type are specified to have in the range of 50 to 150. Find the range of

to 0.993

of an in a particular circuit shows the base current to be 14.46 A, the emitter

to be 1.460 mA, and the base–emitter voltage to be 0.7 V. For these conditions, calculate

10
15

of 10 mA, find the

of each transistor.

mA

A transistor for which 10
16
A and is conducting a collector current of 1 mA. Find BE

SE SB

10
16
A; 10

18

in Fig. 4.6(a) analyzed in Example 4.1, find the maximum value of

in active-mode operation.

e of Actual Transistors

a more realistic (but still simplified) cross section of an

it difficult for the electrons

to escape being collected. In this way, the resulting is close to

Siccome V
C 

si trova a 2 V, che è un potenziale più alto rispetto ai 0.69 V di V
B
, il transistore effettivamente 

lavora in regione attiva diretta.
Ora, sostituendo il generatore di corrente da 10 A con un resistore R

B
 connesso tra la base e la tensione 

di alimentazione da 5 V, come mostrato in Fig. 4.6(b), il valore di R
B
 deve essere:
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at 2 V is higher than at 0.69 V, the transistor is indeed operating in the active mode.
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RB =
VCC −VBE

IB
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5− 0.69

10 µA
= 431 k�

EXERCISES

an BE V at 1 mA. Find BE at mA and 10 mA.

V; 0.76 V

of a certain type are specified to have in the range of 50 to 150. Find the range of

to 0.993

of an in a particular circuit shows the base current to be 14.46 A, the emitter
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it difficult for the electrons

to escape being collected. In this way, the resulting is close to

ESERCIZI

4.1 Si consideri un transistore npn con v
BE

 = 0.7 V quando i
C
 = 1 mA. Si determini il valore di v

BE
 nei casi 

in cui i
C
 = 0.1 mA e 10 mA.

 Ris. 0.64 V; 0.76 V

4.2 Un tipo di transistore presenta un β che può variare nell’intervallo da 50 a 150. Si determini il 
corrispondente intervallo di variazione di α.

 Ris. Da 0.980 a 0.993

4.3 Dalla misura di un BJT npn in un circuito risulta che la corrente di base è 14.46 A, la corrente di 
emettitore è 1.460 mA e la tensione base emettitore è 0.7 V. Si calcoli il valore di α, β e I

S
 corrispondente 

a questi dati.
 Ris. 0.99; 100; 10–15 A

4.4 Si calcoli β di due transistori in cui α = 0.99 e 0.98. Si trovi la corrente di base di ciascun transistore 
corrispondente ad una corrente di collettore di 10 mA.

 Ris. 99; 49; 0.1 mA; 0.2 mA

4.5 Un transistore con I
S
 = 10–16 A e β = 100 conduce una corrente da 1 mA. Si trovi v

BE
. Si determinino 

anche I
SE

 e I
SB

 del transistore.
 Ris. 747.5 mV; 1.01  10–16 A; 10–18 A

4.6 Con riferimento al circuito in Fig. 4.6(a), analizzato nell’Esempio 4.1, si trovi il massimo valore di R
C
 

per cui il transistore lavora in regione attiva diretta.
 Ris. 4.31 k

4.1.3 Struttura dei transistori reali

La Fig. 4.7 mostra una sezione più realistica (ma ancora semplificata) di un BJT npn. Si noti 
che il collettore circonda la regione di emettitore, rendendo quindi difficile che gli elettroni, 
iniettati attraverso la sottile regione di base, non vengano raccolti dal collettore. In questo 






