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Circuiti per la microelettronica, V edizione, € un testo concepito per i corsi di base sui circuiti
elettronici per le lauree del settore dell’Ingegneria elettronica; risulta inoltre utile anche per
chi, ingegnere o professionista del settore, desideri aggiornare le proprie conoscenze.

Cosi come ¢ stato per le prime quattro edizioni, 1’obiettivo di questo libro & di sviluppare
nel lettore la capacita di analizzare e progettare un circuito elettronico, sia esso analogico o
digitale, discreto o integrato. Sebbene siano trattate anche le applicazioni dei circuiti inte-
grati (CI), I’enfasi ¢ posta sul progetto dei circuiti a transistori discreti. Cid perché ¢ nostra
opinione che, anche se la maggior parte di coloro che studieranno da questo testo non intra-
prendera la carriera di progettista di circuiti integrati, la conoscenza di cio che ¢’¢ all’interno
di un circuito integrato li aiutera a trovare per essi applicazioni intelligenti e innovative. Del
resto, grazie ai progressi della tecnologia dei circuiti VLSI e delle metodologie di progetto, il
progetto dei CI stessi ¢ diventato accessibile ad un numero crescente di ingegneri.

11 prerequisito per lo studio del materiale presentato in questo testo € un corso base di analisi
dei circuiti elettrici. Per completezza, alcuni argomenti sui circuiti lineari sono riportati nelle
Appendici: in particolare, i parametri delle reti a due porte sono in Appendice C; alcuni utili
teoremi sulle reti elettriche sono in Appendice D; i circuiti a singola costante di tempo sono
in Appendice E; 1’analisi nel dominio della variabile complessa s sono nell’ Appendice F.
Inoltre, sono presenti alcuni problemi di analisi di circuiti all’inizio della sezione dei pro-
blemi relativi al Capitolo 1. Non sono necessarie conoscenze pregresse di fisica dei semicon-
duttori. Tutta la fisica dei dispositivi necessaria ¢ trattata nel testo e I’ Appendice A fornisce
una breve descrizione dei processi di fabbricazione dei circuiti integrati. Le appendici fanno
parte del materiale digitale accessibile online.

La nostra filosofia si basa sull’assunto che la progettazione di circuiti viene condotta piu effi-
cacemente se vengono evidenziati i compromessi (trade off’) che derivano dalla scelta di una
particolare configurazione circuitale o dalla selezione di determinati valori dei componenti
per un’assegnata configurazione. In questa edizione ¢ stata data maggiore enfasi alla proget-
tazione includendo pill esempi, esercizi e problemi di fine capitolo. Gli esercizi e problemi
proposti a fine capitolo che sono considerati “orientati alla progettazione” sono indicati con
una D. Vengono inclusi nell’ Appendice B numerosi esempi di progetti e simulazioni, enfatiz-
zando 1’uso del piu potente tra gli aiuti alla progettazione: SPICE.

Sebbene sia stata conservata la filosofia e 1’approccio pedagogico delle prime quattro edi-
zioni, sono stati apportati diversi cambiamenti, sia nell’organizzazione che negli argomenti
trattati. Il nostro obiettivo nell’effettuare questi cambiamenti ¢ di aumentare la modularita e
quindi la flessibilita per i docenti. Le modifiche nelle aree trattate sono necessarie a causa
della continua introduzione di nuove tecnologie, che rendono pil interessanti alcuni argo-
menti rispetto ad altri. Per questo stesso motivo ¢ necessario che gli esercizi e gli esempi



siano aggiornati per stare al passo con le ultime novita dei CI (ad esempio alcuni problemi utilizzano para-
metri tipici di processi CMOS a 65 nm). Questi aggiornamenti assicurano che gli studenti acquisiscano una
prospettiva legata alla tecnologia attuale.

Vengono di seguito elencate le modifiche dettagliate che sono state effettuate in questa edizione:

Nuovi problemi alla fine dei capitoli. Il numero di problemi alla fine dei capitoli & stato
aumentato.

Note di approfondimento storico. Queste nuove sezioni aggiungono interessanti prospettive sto-
riche e applicative, gran parte di esse riguardano le invenzioni chiave nell’ingegneria dei circuiti.
Flessibilita nella presentazione del MOSFET e del BJT. Due brevi capitoli presentano in modo
parallelo il BJT (Capitolo 4) e il MOSFET (Capitolo 5). Questi capitoli sono incentrati sulla strut-
tura fisica, sulle caratteristiche corrente-tensione e sulle applicazioni nei circuiti dc dei dispositivi.
L’ordine con cui affrontare tali capitoli ¢ a discrezione del docente, in quanto sono stati scritti per
essere completamente indipendenti tra di loro.

Trattazione unificata degli amplificatori a transistori. Il cuore del primo corso di elettronica &
lo studio degli amplificatori a transistori. La quinta edizione affronta 1’argomento in modo nuovo:
il nuovo Capitolo 6 tratta i principi alla base del funzionamento dei transistori come amplificatori e
presenta i concetti di comportamento per piccolo segnale e modello. Seguono le classiche configu-
razioni di amplificatori a transistori, i metodi di polarizzazione ed esempi concreti di amplificatori a
circuiti discreti. Questa presentazione enfatizza I’unita dei principi di base e permette un trattamento
separato per i due tipi di dispositivi quando necessario. Fondamentalmente si ¢ cosi in grado di con-
frontare i due dispositivi e comprendere quale siano le aree specifiche in cui possono essere applicati.
Presentazione migliorata del cascoding. Il Capitolo 7, che tratta gli elementi costitutivi fon-
damentali degli amplificatori CI, & stato riscritto per migliorarne la comprensione. In particolare
lo sviluppo del cascode, dell’amplificatore cascode e del generatore di corrente cascode sono ora
molto piu chiari.

Presentazione migliorata della risposta alla frequenza. Pur mantenendo la trattazione della
risposta alla frequenza in un unico capitolo, il Capitolo 9 ¢ stato riscritto per migliorarne la com-
prensione, semplificando e chiarificando la presentazione dell’argomento.

Studio semplificato della retroazione. Il capitolo sulla retroazione ¢ stato riscritto per miglio-
rare la presentazione, semplificando e chiarendo questo fondamentale argomento.

Trattamento aggiornato degli stadi di uscita e degli amplificatori. Sono state aggiornate le
sezioni riguardanti i transistori di potenza MOS ed ¢ stata aggiunta una nuova sezione sui sempre
pil importanti amplificatori di potenza in commutazione di classe D.

Una trattazione moderna degli amplificatori operazionali. Sono stati mantenuti gli aspetti
salienti della trattazione del classico amplificatore operazionale 741: riducendo lo spazio occupato
da tale argomento si ¢ fatto posto alla presentazione di alcune tecniche utilizzate nella progetta-
zione di amplificatori operazionali moderni.

Addizionale importanza a filtri e oscillatori nei circuiti integrati. Al Capitolo 13 & stato
aggiunto un paragrafo riguardante i filtri a transconduttanza C, un popolare approccio ai filtri per
la progettazione di circuiti integrati. Per fare posto a questo argomento, la trattazione degli ampli-
ficatori sfalsati ¢ stata spostata nell’ Appendice H. Al Capitolo 14 ¢ stata aggiunta la trattazione
degli oscillatori LC ad accoppiamento incrociato.

Trattazione organizzata e modernizzata dei circuiti integrati digitali. Sono stati apportati
significativi miglioramenti alla breve ma comprensiva trattazione dei circuiti integrati digitali
nella parte conclusiva del testo. Questi includono lo studio delle porte logiche CMOS (Capitolo
15). Il materiale sulla tecnologia dei circuiti logici ¢ stato spostato nel Capitolo 16. Questo capi-
tolo a struttura modulare riguarda alcuni concetti avanzati e specializzati. Dato che i bipolari ven-
gono raramente utilizzati nei dispositivi moderni, ¢ stata ridotta la trattazione dell’ECL. In modo
analogo, il BICMOS ¢ diventato un argomento di nicchia, quindi anche lo spazio dedicato a tale
argomento ¢ stato ridotto. Infine, ¢ stato aggiunto un nuovo paragrafo che riguarda i sensori di
immagini (Capitolo 17).

Confronto approfondito e utile tra MOPSFET e BJT. Tale confronto ¢ ora incluso nell’ Appen-
dice G.
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Per usufruire del materiale online ¢ necessario registrarsi al sito www.edisesuniversita.it (vedi retro coper-
tina per maggiori informazioni); una volta attivato il libro nell’area riservata ¢ possibile accedere alle
appendici in formato digitale:

Appendice A: Tecnologia di fabbricazione dei circuiti VLSI

Appendice B: Modelli SPICE ed esempi di simulazione e progettazione sviluppati utilizzando
PSpice® e Multisim™

Appendice C: Parametri delle reti a due porte

Appendice D: Teoremi utili sulle reti elettriche

Appendice E:  Circuiti a singola costante di tempo

Appendice F:  Analisi nel dominio della frequenza complessa s: poli, zeri e diagrammi di Bode

Appendice G: Confronto tra MOSFET e BJT

Appendice H:  Progettazione di amplificatori sfalsati

Appendice I: ~ Bibliografia

Appendice J:  Valori standard di resistenze e prefissi delle unita di misura

Appendice K: Valori tipici dei parametri di dispositivi integrati fabbricati in processi CMOS
e bipolari

Appendice L:  Risposte a problemi selezionati

11 libro contiene piu di 475 esercizi. Le soluzioni degli esercizi sono date alla fine degli stessi in modo
che lo studente possa verificare subito se ha compreso gli argomenti trattati. La soluzione degli esercizi
dovrebbe essere di aiuto per il lettore per valutare 1’apprendimento del materiale proposto. Oltre agli eser-
cizi ci sono pit di 1400 problemi di fine capitolo, dei quali, circa il 65% sono nuovi o modificati per questa
edizione. I problemi sono riferiti ai singoli paragrafi ed il loro grado di difficolta ¢ indicato con un sistema
di classificazione: i problemi difficili sono contrassegnati con un asterisco (*); i problemi piu difficili sono
contrassegnati con due asterischi (¥*); i problemi molto difficili (e/o molto lunghi da risolvere) sono con-
trassegnati con tre asterischi (***). Dobbiamo ammettere, comunque, che questa classificazione non &
rigorosa. Le nostre valutazioni sono, senza dubbio, soggettive (e dipendenti dall’umore del momento!) e
legate al momento in cui un particolare problema ¢ stato creato. Le risposte a circa la meta dei problemi
sono fornite nell’ Appendice L.

Come nelle precedenti edizioni, sono inclusi molti esempi. Gli esempi e molti dei problemi ed esercizi,
sono basati su circuiti reali e anticipano le applicazioni che si incontrano nella progettazione di circuiti con-
creti. Questa edizione mantiene, per molti esempi, I’uso di numerare i passaggi per arrivare alla soluzione
nelle figure, ricreando le dinamiche utilizzate in classe.

La Parte 1, Dispositivi e circuiti fondamentali include gli argomenti fondamentali per lo studio dei circuiti
elettronici.

Capitolo 1. Il libro si apre con una introduzione dei concetti base dell’elettronica. Vengono presentati i
segnali, il loro spettro di frequenza e le loro forme analogiche e digitali. Vengono introdotti gli amplificatori
come blocchi elementari e ne vengono studiati i vari tipi e modelli. Vengono, inoltre, stabilite la terminolo-
gia e le convenzioni utilizzate in tutto il testo.

La seconda parte del capitolo fornisce una panoramica sui semiconduttori sufficiente per comprendere il
funzionamento dei diodi e dei transistori nei capitoli successivi Questo materiale & particolarmente impor-
tante per gli studenti che non hanno ancora affrontato la fisica dei dispositivi elettronici. Anche chi ha gia
affrontato tali argomenti puo trovare utile un ripasso.
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Capitolo 2. Il Capitolo 2 tratta gli amplificatori operazionali (op amp), le loro caratteristiche ai termi-
nali, alcune semplici applicazioni e limitazioni pratiche. Si ¢ scelto di discutere gli op amp come blocchi
circuitali elementari a questo primo stadio semplicemente perché sono facili da trattare e perché lo studente
puo realizzare con essi circuiti con funzioni non banali con relativa facilita e compiutezza. Abbiamo trovato
questo approccio estremamente motivante per lo studente. Va puntualizzato, comunque, che tutto o parte di
questo capitolo puo essere saltato e studiato successivamente (per esempio insieme al Capitolo 8, Capitolo
10 e/o Capitolo 12) senza perdita di continuita.

Capitolo 3. 11 Capitolo 3 ¢ dedicato allo studio del primo dispositivo elettronico, il diodo. Vengono
presentate le caratteristiche ai terminali del diodo, 1 modelli circuitali usati per rappresentarlo e i circuiti
applicativi fondamentali. Alcune delle applicazioni (ad esempio, Paragrafo 3.6) possono essere tralasciate.
La descrizione dei tipi speciali di diodi (Paragrafo 3.7) puo essere assegnata come lettura per gli studenti.

Capitoli 4 e 5. La base dei circuiti elettronici ¢ data dallo studio dei due tipi di transistore attualmente in
uso: il transistore bipolare nel Capitolo 4 e il transistore MOS nel Capitolo 5. I due capitoli sono comple-
tamente indipendenti ’'uno dall’altro cosi che possano essere trattati nell’ordine desiderato. Oltretutto
presentano la stessa struttura cosi da permettere un semplice e rapido confronto tra i due tipi di transistore.

Ognuno dei due capitoli inizia con lo studio della struttura del dispositivo e del suo funzionamento fisico,
arrivando alla descrizione delle sue caratteristiche ai terminali. Successivamente, per fare acquisire al let-
tore un elevato grado di familiarita con il transistore come elemento circuitale, vengono presentati un gran
numero di esempi di circuiti che utilizzano il dispositivo. L'ultimo paragrafo dei Capitoli 4 e 5 tratta gli
effetti di secondo ordine: questo materiale ¢ incluso per completezza ma puo essere tralasciato.

Capitolo 6. Il cuore del primo corso di elettronica & lo studio degli amplificatori a transistori. Il Capitolo
6 presenta una trattazione unificata del soggetto. Comincia con i principi di base che permettono ai tran-
sistori (di qualsiasi tipo) di funzionare come amplificatori e procede all’introduzione del comportamento
per piccolo segnale e della modellazione. Seguono le classiche configurazioni di amplificatori a transistori,
i metodi di polarizzazione ed esempi concreti di amplificatori a circuiti discreti. Questa presentazione
enfatizza I’unita dei principi di base e permette un trattamento separato per i due tipi di dispositivi quando
necessario. Fondamentalmente si & cosi in grado di confrontare i due dispositivi e comprendere quale siano
le aree specifiche in cui possono essere applicati.

Dopo lo studio della Parte I, lo studente ¢ pronto ad affrontare gli amplificatori nei circuiti integrati nella
Parte II o circuiti integrali digitali nella Parte I'V.

La Parte II, Amplificatori per circuiti integrati, ¢ incentrata allo studio di circuiti amplificatori che pos-
sono essere fabbricati nei circuiti integrati. I quattro capitolo che ne fanno parte costituiscono una tratta-
zione coerente sulla progettazione di amplificatori per circuiti integrati.

MOS e bipolari. Nella Parte IT vengono presentati parallelamente circuiti MOS e bipolari. Dato che i
MOSFET sono i dispositivi dominanti, i circuiti che li riguardano vengono trattati per primi. I circuiti bipo-
lari vengono trattati con lo stesso dettaglio ma pill brevemente.

Capitolo 7. 1l Capitolo 7 apre con una breve introduzione alla filosofia nella progettazione di CI e segue
con la presentazione delle parti fondamentali utilizzate nella progettazione di circuiti amplificatori 1C:
specchi di corrente, generatori di corrente, celle di guadagno e amplificatori cascode.

Capitolo 8. Il Capitolo 8 tratta la parte pitt importante nel circuito CI, gli amplificatori differenziali. Gli
amplificatori multistadio vengono trattati nella parte conclusiva di questo capitolo.

Capitolo 9. 11 Capitolo 9 presenta una trattazione comprensiva della risposta degli amplificatori alla
frequenza, un argomento importante. I Paragrafi 9.1, 9.2 e 9.3 contengono il materiale fondamentale; il
Paragrafo 9.4 approfondisce 1'utilizzo di alcuni importanti strumenti per I’analisi della risposta in alta fre-
quenza; infine i Paragrafi da 9.5 a 9.8 presentano analisi di risposte alla frequenza di varie configurazioni di
amplificatori, che possono essere affrontate quando e se necessario.

Capitolo 10. Il soggetto del Capitolo 10 ¢ la retroazione (feedback), un argomento fondamentale.
Vengono affrontati sia la teoria che le applicazioni della retroazione negativa nella progettazione pratica di
amplificatori con retroazione. Vengono anche discussi i problemi di stabilita relativi agli amplificatori con
retroazione e viene discussa la compensazione in frequenza.

La Parte III, Circuiti integrati analogici, consiste di quattro capitoli che coprono alcune applicazioni
specializzate del materiale presentato nelle prime due parti.
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Capitolo 11. Nel Capitolo 11 si passa dal trattamento di amplificatori per piccoli segnali ad amplifica-
tori che devono gestire grandi segnali e grandi potenze. Vengono studiate le diverse classi di amplificatori
(A, B e AB) e la loro realizzazione nei circuiti bipolari e CMOS. Vengono anche trattati i BJT di potenza, i
MOSFET di potenza e alcuni tipici amplificatori di potenza in CI. Viene presentato un breve studio dell’am-
plificatore di classe D, sempre piu utilizzato.

Capitolo 12. Il Capitolo 12 unisce gli argomenti trattati nei Capitoli 7 e 11 nella progettazione degli
amplificatori operazionali. Vengono trattati amplificatori operazionali di tipo CMOS e bipolari. Nel secondo
caso, oltre alla trattazione del classico circuito 741, vengono presentati tecniche moderne per lo sviluppo di
op-amp a bassa tensione (Paragrafo 12.4).

Capitolo 13. 11 Capitolo 13 tratta i filtri, che sono un elemento importante nei sistemi di comunicazione
e degli strumenti. La trattazione & comprensiva, orientata alla progettazione e il materiale presente dovrebbe
consentire allo studente di effettuare una progettazione completa di un filtro, dalle caratteristiche alla realiz-
zazione di un circuito completo. Sono incluse numerose tabelle utili alla progettazione.

Capitolo 14. 11 Capitolo 14 tratta i circuiti utilizzati nella generazione di segnali con diverse forme
d’onda: sinusoidali, quadrate e triangolari. Vengono anche presentati circuiti per ottenere forme d’onda non
lineari.

La Parte 1V, Circuiti integrati digitali, offre una trattazione breve ma comprensiva e sufficientemente
dettagliata della progettazione di circuiti integrati digitali. La comprensione di questa parte richiede una
profonda conoscenza del materiale riguardante il MOSFET (Capitolo 5): per questo ¢ possibile trattare que-
sta parte subito dopo il Capitolo 5. Da notare che per la parte finale del Capitolo 16 & richiesta la conoscenza
del BJT (Capitolo 4) e delle capacita interne del MOSFET (Paragrafo 9.2.2).

Capitolo 15. II Capitolo 15 ¢ la parte fondamentale della Parte IV, e si apre con la trattazione di circuiti
logici CMOS. Segue un dettagliato studio degli invertitori logici digitali, concentrandosi sull’invertitore
CMOS: la sua progettazione e le sue caratteristiche statiche e dinamiche. La dimensione dei transistori e la
dissipazione della potenza completano gli argomenti del Capitolo 15. Il materiale presente in tale capitolo
¢ il minimo per imparare qualcosa di significativo sui circuiti digitali.

Capitolo 16. 11 Capitolo 16 ha una struttura modulare e tratta sei argomenti in qualche modo avanzati.
Viene presentata la legge di Moore e 1’avanzamento tecnologico che ha reso possibile la fabbricazione di
chip con miliardi di transistori. Segue una presentazione delle tecnologie CI digitali e i metodi per proget-
tare possibili CI molto complessi. Vengono infine presentati quattro differenti circuiti logici. Solo I’ultimo
di questi include transistori bipolari.

Capitolo 17. I circuiti digitali possono essere suddivisi sommariamente in circuiti logici e circuiti di
memoria; il Capitolo 17 tratta questi ultimi.

Appendici. Le dodici appendici contengono molto materiale supplementare di sussidio per il lettore.
In particolare 1’ Appendice A fornisce una coincisa introduzione sulla tecnologia di fabbricazione dei CI,
incluso il layout dei circuiti. L’ Appendice B fornisce modelli SPICE, cosi come moltissimi esempi di pro-
gettazione e simulazione in PSpice® e Multisim™.

Adel S. Sedra

Kenneth C. (KC) Smith
Waterloo, Ontario, Canada
Settembre 2015



Il testo di Adel S. Sedra e Kenneth C. Smith ¢ ormai un consolidato riferimento nel panorama
internazionale dei testi di Elettronica ed ¢ da tempo ampiamente diffuso ed apprezzato anche
in Italia. In particolare, uno dei principali pregi dell’ opera consiste nell’aver saputo coniugare
la trattazione dei circuiti elettronici elementari di base con i riferimenti piu attuali tratti dal
contesto dei moderni circuiti integrati. L’attenzione verso gli aspetti progettuali, i numero-
sissimi esercizi e problemi proposti, il materiale di supporto disponibile sul sito dedicato e la
veste grafica esemplare corredano il tutto. Nel succedersi delle varie edizioni, se ne ¢ apprez-
zata sempre piu I’'impostazione generale, la chiarezza e la completezza dell’esposizione dei
vari argomenti, frutto della grande esperienza degli autori e del contributo di numerosissimi
revisori.

Questa edizione, in particolare, ¢ caratterizzata da una sostanziale riorganizzazione dei
contenuti in modo da realizzare un’impostazione modulare degli argomenti, con capitoli
spesso autoconsistenti. Cio rende il testo adatto alle esigenze didattiche piu varie, in quanto i
vari capitoli possono essere assemblati rispettando gli assetti didattici e le tradizioni della sin-
gola sede universitaria. Il testo copre argomenti che tipicamente trovano spazio in pit corsi di
elettronica analogica e digitale di base. Per una descrizione dettagliata dell’organizzazione e
delle innovazioni apportate in questa edizione si rimanda alla prefazione degli autori.

L’impegno di questo lavoro di traduzione, sostenuto con competenza e dedizione dai tanti
colleghi di universita di tutta Italia, trova la sua giustificazione nell’intento di promuovere
una ancor piu capillare diffusione del testo, favorendo anche una maggiore condivisione degli
argomenti di base dell’elettronica fra le varie sedi universitarie, cosa auspicabile anche ai fini
di una pitu agevole mobilita degli studenti senza residui debiti formativi.

11 principio ispiratore di tutto il lavoro & stato quello di rendere una traduzione quanto pit
possibile aderente al testo originale cercando, al contempo, di mantenere 1’esposizione line-
are e fluida come quella di un testo in madrelingua. Si ¢ deciso, tuttavia, di evitare di tradurre
quei termini inglesi entrati ormai nell’uso corrente e peraltro quasi intraducibili in italiano
senza ricorrere a forzature.

L’impegno dei tanti illustri colleghi di universita diverse che hanno partecipato al lavoro
di traduzione ¢ stato spesso anche occasione di interessanti confronti, di approfondimenti
e, in generale, di arricchimento culturale per ciascuno, cosa che ha contribuito, a volte, ad
alleviare la fatica.

Laugurio e la speranza ¢ che questo sforzo trovi la sua ricompensa nell’ apprezzamento
di quanti, trovandosi ad affrontare lo studio dell’Elettronica, sceglieranno questo testo e nei
vantaggi che ne potranno trarre nel cimentarsi con una materia tanto affascinante quanto
vasta e complessa.

Francesco Corsi
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La struttura fisica ed il funzionamento di un transistore bipolare.

Come la tensione tra due terminali del transistore controlla la corrente che fluisce
nel terzo terminale, e le equazioni che descrivono questa relazione tensione-
corrente.

Come si analizzano e progettano circuiti che contengono transistori bipolari,
resistori e sorgenti dc.

Avendo studiato il diodo a giunzione, ossia il componente piu basilare a due terminali, rivol-
giamo ora la nostra attenzione ai componenti a semiconduttore a tre terminali.

I dispositivi a tre terminali sono molto piu utili di quelli a due terminali, come i diodi
studiati nel Capitolo 3, perché possono essere utilizzati in una moltitudine di applicazioni che
vanno dall’amplificazione dei segnali al progetto dei circuiti logici e delle memorie digitali.
11 principio base del loro funzionamento consiste nell’utilizzo di una tensione applicata tra
due terminali per controllare la corrente che fluisce nel terzo terminale. In questo modo, un
dispositivo a tre terminali puo essere utilizzato per realizzare un generatore controllato, il
quale, come anticipato nel Capitolo 1, costituisce la base per il progetto degli amplificatori.
Oppure, al limite, il segnale di controllo puo essere utilizzato per far variare la corrente nel
terzo terminale da zero ad un valore grande, cosi che il dispositivo si comporti come un inter-
ruttore. Linterruttore costituisce la base per la realizzazione dell’invertitore logico, 1I’elemen-
to fondamentale dei circuiti digitali.

Ci sono due tipi principali di componenti a semiconduttore a tre terminali: il transistore
bipolare a giunzione, che verra studiato in questo capitolo, e il transistore metallo-ossido-se-
miconduttore ad effetto di campo, che verra studiato nel capitolo 5.

L’invenzione del BJT nel 1948 presso i Bell Telephone Laboratories segna I’inizio dell’e-
ra dei circuiti a stato solido. L’effetto fu non soltanto la sostituzione dei tubi a vuoto con i
transistori in apparecchi radio e televisori ma piuttosto 1’esplosione della rivoluzione elettro-
nica che ha portato a fondamentali cambiamenti nel modo di lavorare, divertirsi e, infine, di
vivere. L’invenzione del transistore ha anche permesso 1’inizio dell’era della tecnologia in-
formatica e I’emergenza dell’economia basata sulla conoscenza.

Il transistore bipolare ha costituito per circa tre decadi il dispositivo di elezione nel pro-
getto dei circuiti sia discreti che integrati. Sebbene il MOSFET fosse conosciuto da molto
tempo, & stato solo a partire dagli anni 70 e 80 che esso ¢ diventato un serio concorrente del
BIJT. Dal 2015, il MOSFET ¢ senza dubbio il dispositivo elettronico piu largamente utilizza-
to e la tecnologia CMOS ¢ la tecnologia dominante nel progetto dei circuiti integrati.
Ciononostante, il BJT rimane un dispositivo rilevante e insuperato in alcuni campi di appli-
cazione.

La popolarita del BJT ¢ rimasta alta nel progetto dei circuiti a componenti discreti, in cui
viene utilizzato insieme ad altri componenti discreti quali resistenze e capacita per realizzare
circuiti montati su schede a circuito stampato (Printed-Circuit Boards, PCB). E da notare la
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disponibilita di una larghissima selezione di tipi di BJT che soddisfano le esigenze pratica-
mente di ogni applicazione. II BJT inoltre & ancora il dispositivo preferito in applicazioni
circuitali analogiche, sia integrate che discrete, che richiedono elevate prestazioni. Cio ¢ vero
in particolare in circuiti a frequenze molto alte e ad alta velocita. E tuttora in uso una famiglia
di circuiti logici digitali ad altissima velocita, basata sul transistore bipolare, detta logica ad
emettitori accoppiati (ECL, Emitter-Coupled Logic, Capitolo 16). Infine, i transistori bipola-
ri possono essere combinati con i MOSFET per realizzare circuiti innovativi che uniscono
I’elevata impedenza di ingresso e la bassa dissipazione di potenza dei MOSFET con la capa-
cita dei transistori bipolari di funzionare a frequenze molto alte con correnti molto alte. La
tecnologia che ne risulta ¢ nota come BiMOS o BiCMOS e sta trovando aree di applicazione
sempre piu vaste (si vedano Capitoli 7 e 16).

In questo capitolo cominceremo con una semplice descrizione del funzionamento fisico
del BJT. Sebbene semplificata, tale descrizione fisica fornisce un notevole approfondimento
sulle prestazioni del transistore come elemento circuitale. Successivamente passeremo velo-
cemente dalla descrizione del flusso di corrente in termini di elettroni e lacune allo studio
delle caratteristiche ai terminali del transistore. Saranno anche sviluppati i modelli circuitali
per i diversi modi di funzionamento del transistore utilizzati nell’analisi e nel progetto dei
circuiti. L’ obiettivo principale di questo capitolo consiste nello sviluppare nel lettore un ele-
vato grado di familiarita con il BJT. Quindi, pone le basi per I’'uso del BJT nel progetto di
amplificatori (Capitolo 6).

La Fig. 4.1 mostra la struttura semplificata di un BJT. Una struttura realistica sara mostrata in
seguito (si veda anche I’ Appendice A per quel che riguarda la tecnologia di fabbricazione).

Come mostrato in Fig. 4.1, il BJT & formato da tre regioni di semiconduttore: la regione
di emettitore (di tipo n), la regione di base (di tipo p) e la regione di collettore (di tipo 7). Un
tale tipo di BJT ¢ detto transistore npn. Un altro tipo di transistore, duale rispetto al tipo npn
come mostrato in Fig. 4.2, ¢ caratterizzato dall’emettitore di tipo p, la base di tipo n ed il
collettore di tipo p e viene pertanto chiamato transistore pnp.

Ognuna delle tre regioni di semiconduttore ¢ collegata ad un terminale chiamato rispetti-
vamente emettitore (E), base (B) e collettore (C).

11 transistore ¢ costituito da due giunzioni pn, la giunzione emettitore-base (EBJ) ¢ la
giunzione collettore-base (CBJ). A seconda delle condizioni di polarizzazione (diretta o in-
versa) di ognuna di queste giunzioni, si ottengono diversi modi o regioni di funzionamento
del BJT, cosi come mostrato in Tabella 4.1. La regione attiva (o regione attiva diretta) ¢
quella che si utilizza quando il transistore deve funzionare da amplificatore. Le applicazioni
in commutazione (per. es. i circuiti logici) utilizzano sia la regione di interdizione che la
regione di saturazione. Nella regione di interdizione, come suggerito dal nome, il flusso di
corrente ¢ pressoché nullo visto che le giunzioni sono entrambe polarizzate in inversa.

Come verra mostrato fra poco, in un transistore bipolare il processo di conduzione della
corrente & sostenuto da portatori di carica di entrambe le polarita, cio¢ elettroni e lacune, da
cui il nome bipolare'.

' Questo ¢ diverso da quello che accade nei MOSFET, in cui la corrente & sostenuta da portatori di
carica di un solo tipo, ovvero elettroni nei dispositivi a canale n, lacune nei dispositivi a canale p. Per
questo motivo inizialmente i FET venivano talora definiti dispositivi unipolari.



4.1 Struttura del dispositivo e funzionamento fisico

Contatto
tipo n tipo p tipo n 4 metallico
Emettit Regione Regione Regione
mE:E)l ore di emettitore di base di collettore Col(lét)tore
/ = \\
Giunzione Giunzione
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(B)
Struttura semplificata del transistore npn.
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(ohmico) p n P
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di emettitore di base di collettore
B

Struttura semplificata del transistore pnp.

Tabella 4.1 Regioni di funzionamento del BJT

Regione EBJ CBJ

Interdizione Inversa Inversa
Attiva Diretta Inversa
Saturazione Diretta Diretta
Attiva inversa Inversa Diretta

La regione attiva ¢ la pit importante delle tre regioni di funzionamento del BJT definite pri-
ma. Per questo motivo, cominciamo con I’esaminare il funzionamento fisico del transistore
nella regione attiva.> Questa situazione ¢ illustrata nella Fig. 4.3 per il transistore npn. Due
generatori di tensione esterni (rappresentati come batterie) vengono utilizzati per stabilire le
condizioni di polarizzazione richieste per il funzionamento nella regione attiva. La tensione
V. porta la base di tipo p ad un potenziale maggiore rispetto all’emettitore di tipo n, polariz-
zando quindi direttamente la giunzione emettitore-base. La tensione collettore-base V., porta
il collettore di tipo n ad un potenziale piu alto rispetto alla base di tipo p, polarizzando cosi
inversamente la giunzione collettore-base.

2 1l materiale in questo paragrafo presume che il lettore abbia familiarita con il funzionamento della
giunzione pn in polarizzazione diretta (Paragrafo 1.11).
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Polarizzata diretta Polarizzata inversa
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Flusso di corrente in un transistore npn polarizzato in regione attiva. (Le componenti delle cor-
renti inverse dovute alla deriva dei portatori minoritari generati termicamente non sono mostrate).

La polarizzazione diretta della giunzione emettitore-base dara origine
a un flusso di corrente attraverso questa giunzione. La corrente sara formata da due compo-
nenti: elettroni iniettati dall’emettitore verso la base e lacune iniettate dalla base verso 1’emet-
titore. Come sara chiaro tra poco, ¢ assolutamente preferibile che la prima componente (elet-
troni dall’emettitore verso la base) sia molto piu grande della seconda componente (lacune
dalla base verso I’emettitore). Ci0 si puo ottenere realizzando il dispositivo con un emettitore
molto drogato ed una base poco drogata, cio¢ il dispositivo viene progettato in modo da pre-
sentare un’elevata densita di elettroni nell’emettitore ed una bassa densita di lacune nella
base.

La corrente che fluisce attraverso la giunzione emettitore-base costituira la corrente di
emettitore 7, come indicato in Fig. 4.3. La direzione di i, ¢ “uscente” dal terminale emettito-
re, quindi con direzione concorde con il flusso di cariche positive (lacune) ed opposta rispet-
to al flusso di cariche negative (elettroni), con la corrente i, pari alla somma di queste due
componenti. Comunque, dal momento che la componente di elettroni ¢ molto piti grande
della componente di lacune, la corrente di emettitore sara dominata dalla componente di
elettroni.

Dallo studio nel Paragrafo 1.11 del flusso di corrente attraverso una giunzione pn polariz-
zata direttamente, sappiamo che 1’ampiezza sia della componente di elettroni che di quella di
lacune di i, risulta proporzionale a e"* Vr dove v, € il potenziale diretto applicato attraverso
la giunzione base-emettitore e V, € la tensione termica (approssimativamente 25 mV a tem-
peratura ambiente).

Concentriamoci ora sulla prima componente di questa corrente, ovvero quella dovuta ad
elettroni iniettati dall’emettitore entro la base. Questi elettroni saranno portatori minoritari
nella regione di base, di tipo p. Poiché la loro concentrazione sara massima dal lato della base
prossimo all’emettitore, gli elettroni iniettati diffonderanno attraverso la base stessa verso il
collettore. Nel loro viaggio attraverso la base, alcuni degli elettroni ricombineranno con lacu-
ne, che nella base sono portatori maggioritari. Tuttavia, poiché la base ¢ tipicamente molto
sottile e, come precedentemente indicato, debolmente drogata, la porzione di elettroni “per-
sa” attraverso questo processo di ricombinazione ¢ molto ridotta. La maggior parte degli
elettroni che diffondono raggiungera il bordo della zona di svuotamento tra collettore e base.
Poiché il collettore & polarizzato a potenziale positivo rispetto alla base (dalla tensione inver-
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sa v,,), questi elettroni sopraggiunti saranno spinti attraverso la zona di svuotamento CBJ
entro il collettore. Essi saranno quindi raccolti e costituiranno la corrente di collettore.

Dalla discussione precedente emerge che la corrente di collet-
tore ¢ costituita dagli elettroni che raggiungono la regione di collettore. Il verso di questa
corrente sara opposto a quello del flusso degli elettroni, percio entrante nel terminale di col-
lettore. La sua ampiezza sard proporzionale a e”/'" | quindi

i =Ige™"r “1n =<

dove la costante di proporzionalita / > come nel caso del diodo, ¢ chiamata corrente di satu-
razione e rappresenta un parametro del transistore. Diremo di pit su /, a breve.

Un’importante osservazione da fare ¢ che il valore di i . ¢ indipendente da v,,. Ciog, fino
a quando il collettore ¢ a un potenziale positivo rispetto alla base, gli elettroni che raggiungo-
no la giunzione collettore-base vengono spinti verso il collettore e diventano corrente di
collettore.

Riferendoci alla Fig. 4.3, si puo vedere che la corrente di base i, ¢
costituita da due componenti. La prima componente, i, , ¢ data dalle lacune iniettate dalla
regione di base nella regione di emettitore e risulta proporzionale al fattore ¢”’'" . La secon-
da componente, i,,, ¢ dovuta alle lacune fornite dal circuito esterno per rimpiazzare le lacune
della regione di base perse per ricombinazione con gli elettroni iniettati dall’emettitore.
Siccome i,, ¢ proporzionale al numero di elettroni iniettati in base, anch’essa sara proporzio-
nale al fattore e%=/"7 Conseguentemente, la corrente di base totale, i, = i, + iy, risulta
proporzionale a e¢™*’'" e pud quindi essere espressa come frazione della corrente di colletto-
re i secondo I’equazione:

4.2) <

lp =

te
B

Quest’ultima diventa:

iy = <§>e’v 43 =<

in cui B € un parametro del transistore.

Nei transistori npn moderni, § puo indicativamente variare tra 50 e 200, ma puo arrivare
fino a 1000 in dispositivi speciali. Per motivi che verranno chiariti in seguito, il parametro
viene chiamato guadagno di corrente a emettitore comune.

Dalla discussione precedente emerge che il valore di § ¢ fortemente influenzato da due
fattori: lo spessore della regione di base, W, e il livello relativo di drogaggio delle regioni di
base e di emettitore, N,/N, . Per ottenere un alto valore di B (il che ¢ altamente desiderabile,
visto che B ¢ un parametro di guadagno), la base deve essere sottile (W piccolo) e poco dro-
gata, mentre 1’emettitore deve essere fortemente drogato (in modo da avere un rapporto
N, /N, ridotto). Nel caso delle tecnologie di fabbricazione di circuiti integrati moderne, W &
di dimensioni nanometriche.

Siccome la corrente entrante in un transistore deve essere
uguale a quella uscente, dalla Fig. 4.3 si vede che la corrente di emettitore i, ¢ uguale alla
somma della corrente di collettore i . e della corrente di base i, ovvero,

ip=ic+ip 44 =<
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Dalle Equazioni (4.2) e (4.4) si ricava che

. _BHI1.
i = e (4.5)
Quindi,
1
ip= 'BilseUBE/VT (4.6)
B
L’Eq. (4.5) puo essere espressa nella forma alternativa
i =iy 4.7)
in cui la costante « ¢ legata a 8 dalla relazione
o= L 4.8)
B+1
Quindi, la corrente di emettitore nell’Eq. (4.6) puo essere scritta come
ip = (Igo)e " (4.9)
Infine, possiamo usare 1’Eq.(4.8) per esprimere S in funzione di «, cioe
o
B= (4.10)
-«

Dall’Eq. (4.8) si vede che « ¢ una costante che (per un dato transistore) ¢ inferiore, anche
se molto vicina, all’unita. Ad esempio, se 8 = 100, allora o >~ 0.99. L’Eq. (4.10) rivela un
fatto importante: a piccoli cambiamenti di « corrispondono grandi variazioni di 8. Questa
osservazione matematica si manifesta fisicamente nel fatto che transistori dello stesso tipo
possono avere valori di 8 molto diversi tra loro. Per motivi che verranno chiariti in seguito, il
parametro « viene chiamato guadagno di corrente a base comune.

La nostra comprensione del comportamento fisi-
co del BJT puo essere migliorata considerando la distribuzione dei portatori di carica mino-
ritari nella base e nell’emettitore. La Fig. 4.4 mostra i profili della concentrazione di elettroni
nella base e delle lacune nell’emettitore di un transistore npn funzionante in zona attiva. Si
osservi che essendo la concentrazione di drogante nell’emettitore, N,, molto piu alta della
concentrazione di drogante nella base, N, la concentrazione di elettroni iniettati dall’emetti-
tore nella base, np(O), ¢ molto piu alta della concentrazione di lacune iniettate dalla base
nell’emettitore, p (0). Entrambe le quantita sono proporzionali a e’V percio

n,(0) = n,e"/"r (4.11)

dove n, ¢ il valore all’equilibrio termico della concentrazione dei portatori minoritari (elet-
troni) nella regione di base.

Si osservi inoltre che, dato che la base € molto sottile, la concentrazione dell’eccesso di
elettroni diminuisce in modo approssimativamente lineare (diversamente dall’usuale decre-
scita esponenziale, osservabile ad esempio per I’eccesso di lacune nella regione di emettito-
re).

Inoltre, la polarizzazione inversa sulla giunzione collettore-base impone che la concentra-
zione degli elettroni in eccesso dal lato del collettore della base sia nulla. (Si ricordi che tutti
gli elettroni che raggiungono quel punto sono spinti verso il collettore).

La forma discendente del profilo di concentrazione dei portatori minoritari (Fig. 4.4)
provoca la diffusione attraverso la base, verso la regione di collettore, degli elettroni iniettati



4.1 Struttura del dispositivo e funzionamento fisico 247
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Profili di concentrazione dei portatori minoritari nella base e nell’emettitore di un transistore npn
in regione attiva: U > Oe Ve = 0.

nella base. Questa corrente di diffusione degli elettroni /, € direttamente proporzionale alla
pendenza del profilo di concentrazione,

dn (x
In:AEan /’( )
dx

_aqp (O 412
- Eq n(_ W ) (' )

dove A, rappresenta I’area trasversale della giunzione emettitore-base (nella direzione per-
pendicolare alla pagina), g rappresenta il modulo della carica dell’elettrone, D, la diffusivita
degli elettroni nella base e W la lunghezza efficace della base. Si osservi che la pendenza
negativa della concentrazione dei portatori minoritari produce una corrente / negativa attra-
verso la base, cioe, I, scorre da destra verso sinistra (nel verso negativo dell’asse x), che
corrisponde alla convenzione usuale, cio¢ opposta alla direzione del flusso di elettroni.

La ricombinazione nella regione di base, anche se minima, fa si che il profilo della con-
centrazione dei portatori minoritari si allontani dalla linea retta e assuma la forma leggermen-
te concava indicata dalla linea tratteggiata in Fig. 4.4. La pendenza del profilo di concentra-
zione presso la EBJ ¢ leggermente piu alta rispetto alla pendenza presso la CBJ, la differenza
dovuta al piccolo numero di elettroni perso nella base attraverso la ricombinazione.

Infine, abbiamo la corrente di collettore i =1, che produrra un valore negativo per i o in
accordo con il fatto che i.. fluisce nel verso negativo dell’asse x (cio¢ da destra verso sinistra).
Dal momento perd che prenderemo questo come verso positivo della corrente i, il segno
meno nell’Eq. (4.12) puo essere eliminato. Con questa ipotesi e sostituendo al posto di np(O)
I’espressione data dall’Eq. (4.11), possiamo esprimere la corrente di collettore i come:

P AL
i =Ie <

in cui la corrente di saturazione I ¢ data da

Iy =AzqD,n, /W
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Sostituendo n,= n?/N,, dove n, rappresenta la concentrazione intrinseca dei portatori e N,
rappresenta la concentrazione del drogante nella base, si pud esprimere I, come

[g=—Lrt
STONW

(4.13)

La corrente di saturazione /; ¢ inversamente proporzionale all’ampiezza della regione di
base W ed ¢ direttamente proporzionale all’area della EBJ. Tipicamente /, assume valori
nell’intervallo da 10> A a 10-"* A (a seconda delle dimensioni del dispositivo). Poiché I &
proporzionale a n?, essa & fortemente dipendente dalla temperatura, presentando approssima-
tivamente un raddoppio per ogni 5°C di aumento della temperatura. (Per la dipendenza di n?
dalla temperatura si veda I’Eq. 1.26).

Dal momento che /; ¢ direttamente proporzionale all’area di giunzione (cio¢ alle dimen-
sioni del dispositivo), essa viene anche detta corrente di scala. Due transistori identici, ec-
cetto che per uno I’area di giunzione ¢ doppia rispetto all’altro, presenteranno correnti di
saturazione nello stesso rapporto (cio¢ 2). Quindi a parita di v,, il dispositivo pit grande
presentera una corrente di collettore doppia rispetto a quella del dispositivo pit piccolo. Nella
progettazione dei circuiti integrati questa proprieta viene impiegata frequentemente.

Abbiamo presentato un modello del primo
ordine per il funzionamento del transistore npn nella zona attiva. Fondamentalmente, la ten-
sione di polarizzazione diretta della giunzione emettitore-base, v,,, provoca la nascita di una
corrente i, legata esponenzialmente alla v,,, che scorre nel terminale di collettore. La corren-
te di collettore i, ¢ indipendente dal valore della tensione di collettore fino a che la giunzione
collettore-base ¢ polarizzata inversamente, cioe, Uy 2 0. Quindi nella regione attiva il termi-
nale di collettore si comporta come un generatore ideale di corrente costante con il valore
della corrente determinato dalla v,,. La corrente di base i, ¢ una frazione 1/8 della corrente
di collettore, e la corrente di emettitore ¢ pari alla somma delle correnti di base e di collettore.
Dal momento che i, ¢ molto piu piccola di i. (cioe B> 1), i, ~ i . Piu precisamente, la cor-
rente di collettore ¢ una frazione « della corrente di emettitore, con « piu piccolo dell’unita,
ma molto prossimo ad essa.

Il modello del primo ordine del funzionamento del transistore nella regione attiva diretta
pud essere rappresentato dal circuito equivalente mostrato nella Fig. 4.5(a). 11 diodo D, ha
una corrente di scala [, uguale a (I, /) e fornisce quindi una corrente i, legata alla v, secon-
do I’Eq. (4.9). La corrente del generatore controllato, che ¢ uguale alla corrente di collettore,
¢ controllata da v,, secondo la relazione esponenziale indicata, una riaffermazione dell’Eq.
(4.1). Questo modello ¢ essenzialmente un generatore di corrente non lineare controllato in
tensione. Esso puod essere convertito nel modello con generatore di corrente controllato in
corrente, mostrato in Fig. 4.5(b), esprimendo la corrente del generatore controllato come ai,.
Si noti che anche questo modello € non lineare a causa della relazione esponenziale che lega
la corrente i " che attraversa il diodo D,, alla tensione v,,- Da questo modello si osserva che,
se il transistore viene visto come una rete a due porte, con la porta di ingresso tra Ee B e la
porta di uscita tra C e B (cio¢ con B come terminale comune), il guadagno di corrente che si
osserva ¢ uguale ad «. Per questo « viene chiamato guadagno di corrente a base comune.

Altri due modelli circuitali equivalenti che possono essere usati per descrivere il funzio-
namento del BJT sono mostrati in Fig. 4.5(c) e (d). Il modello in Fig. 4.5(c) ¢ essenzialmente
un generatore di corrente controllato in tensione. In questo modello il diodo D, conduce la
corrente di base, quindi la sua corrente di scala ¢ /./8 e la relazione i, — v, risulta quella data
nell’Eq. (4.3). Scrivendo invece la corrente di collettore come Si,, si ottiene il modello con il
generatore di corrente controllato in corrente riportato nella Fig. 4.5(d). Da quest’ultimo
possiamo osservare che, se il transistore viene usato come una rete a due porte, con la porta
di ingresso tra B ed E e la porta di uscita tra C ed E (cioe, con E come terminale comune),
allora il guadagno di corrente osservato & proprio f. E per questo che 8 viene chiamato gua-
dagno di corrente a emettitore comune.
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Modelli circuitali equivalenti per grandi segnali del transistore npn in regione attiva diretta.

Infine, va sottolineato che i modelli riportati in Fig. 4.5 sono validi per qualunque valore
positivo di Uy Vale a dire che, a differenza dei modelli che discuteremo nel Paragrafo 4.5, in
questo caso non sono fatte ipotesi limitative sul valore di v,,, motivo per cui questi modelli
sono chiamati modelli per grandi segnali.

Un transistore npn con I, = 10" A'e B = 100 & connesso nel modo seguente: I’emettitore & a massa, la base
¢ alimentata con un generatore di corrente costante che fornisce una corrente dc di 10 uA e il collettore ¢
collegato a una tensione di alimentazione da 5 V attraverso un resistore R da 3 kQ. Assumendo che il tran-
sistore lavori in regione attiva diretta, si determini il valore di V,, e V. Si utilizzino questi valori per veri-
ficare I’assunzione di funzionamento in regione attiva diretta. Quindi si sostituisca il generatore di corrente
con un resistore connesso tra la base e la tensione di alimentazione da 5 V. Quale valore di resistenza ¢ ne-

cessario per ottenere le stesse condizioni operative precedenti?
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continua

Soluzione

Se il transistore lavora in regione attiva, puo essere rappresentato da uno dei quattro modelli circuitali equiva-
lenti mostrati nella Fig. 4.5. Visto che 1’emettitore ¢ a massa, ¢ conveniente usare il modello in Fig. 4.5(c) o
quello in Fig. 4.5(d). Siccome la corrente di base € nota, il modello in Fig. 4.5(d) risulta il piu adatto.

Vee= +5V
Re= 3k
10 A
B C
Dy Bly

Circuiti per I'Esempio 4.1.

La Fig. 4.6(a) mostra il circuito risultate dall’utilizzo del modello equivalente riportato in Fig. 4.5(d). Si
pud determinare V,dalla caratteristica esponenziale di D, nel modo seguente:

I
Ve =V, 1n17”ﬁ

10x10°

=690 mV =0.69 V
Quindi, si ricava il valore di Ve dall’equazione:
Ver = Vee =Rl

in cui
I.=pI,=100x10x 10 °=10"A=1mA

Di conseguenza si ottiene



4.1 Struttura del dispositivo e funzionamento fisico 251

Ve =5-3x1=+2V

Siccome V_si trova a +2 'V, che ¢ un potenziale piu alto rispetto ai 0.69 V di V, il transistore effettivamente
lavora in regione attiva diretta.

Ora, sostituendo il generatore di corrente da 10 uA con un resistore R, connesso tra la base e la tensione
di alimentazione da 5 V, come mostrato in Fig. 4.6(b), il valore di R, deve essere:

VCC — VB‘E
I B
5—0.69
T 10pA

R, =

=431kQ

Si consideri un transistore npn con v,, = 0.7 V quando i.= 1 mA. Si determini il valore di v,, nei casi
incuii.=0.1 mAe 10 mA.
0.64V;0.76 V

Un tipo di transistore presenta un S che puo variare nell’intervallo da 50 a 150. Si determini il
corrispondente intervallo di variazione di o.
Da 0.980 a 0.993

Dalla misura di un BJT npn in un circuito risulta che la corrente di base ¢ 14.46 uA, la corrente di
emettitore ¢ 1.460 mA e la tensione base emettitore ¢ 0.7 V. Si calcoli il valore di o, B e I corrispondente
a questi dati.

0.99; 100; 1075 A

Si calcoli B di due transistori in cui & = 0.99 e 0.98. Si trovi la corrente di base di ciascun transistore
corrispondente ad una corrente di collettore di 10 mA.
99; 49; 0.1 mA; 0.2 mA

Un transistore con [, = 107'° A e = 100 conduce una corrente da 1 mA. Si trovi v,,. Si determinino
anche [, e I, del transistore.
747.5mV; 1.01 x 107° A; 1078 A

Con riferimento al circuito in Fig. 4.6(a), analizzato nell’Esempio 4.1, si trovi il massimo valore di R,
per cui il transistore lavora in regione attiva diretta.
4.31 kQ

La Fig. 4.7 mostra una sezione piu realistica (ma ancora semplificata) di un BJT npn. Si noti
che il collettore circonda la regione di emettitore, rendendo quindi difficile che gli elettroni,
iniettati attraverso la sottile regione di base, non vengano raccolti dal collettore. In questo
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