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Che cos’é la Chimica Inorganica
Descrittiva?

radizionalmente la chimica inorganica descrittiva illustrava le proprieta

degli elementi e dei loro composti. Oggi, tuttavia, con ’aumentare dell’in-
teresse sull’argomento, queste proprieta possono essere messe in relazione
alle formule dei composti, quindi alla loro struttura, con cio favorendo la com-
prensione della loro reattivita. Inoltre, la chimica inorganica non ¢ piu vista
come una materia isolata di carattere accademico, ma come parte della cono-
scenza scientifica essenziale per le nostre vite. Proprio per la necessita di con-
testualizzare queste novita, nel testo sono introdotti degli approfondimenti a
inizio di ogni capitolo, i Focus.

In diversi corsi di laurea parte della chimica inorganica descrittiva viene
affrontata il primo o il secondo anno. In questo modo gli studenti vengono a
conoscenza di alcune delle proprieta fondamentali degli elementi pitt impor-
tanti e dei loro composti. Tali conoscenze risultano interessanti non solo per i
chimici, ma anche per chi studia farmacia, medicina, geologia, scienze ambien-
tali e altre materie scientifiche. Questo corso puo, infatti, essere seguito da
altri corsi che si concentrano sugli aspetti teorici e/o sull’uso della spettrosco-
pia, con un approfondimento maggiore di quello affrontato in un testo descrit-
tivo. In effetti, i corsi teorici si sviluppano bene a partire da una base di
conoscenze descrittive; senza tali conoscenze la teoria diventa sterile e poco
interessante.

Questo libro ¢ stato scritto per trasmettere alle nuove generazioni l'inte-
resse per la chimica inorganica descrittiva. Quindi i commenti dei lettori (stu-
denti o professori) saranno apprezzati. Gli indirizzi e-mail degli autori inglesi
sono: grcanham@grenfell. mun.ca e T.L.Overton@hull.ac.uk.
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PREFAZIONE

La Chimica Inorganica Descrittiva va oltre I'interesse accade-
mico; ¢ una parte fondamentale delle nostre vite.

L’importanza della chimica inorganica nelle nostre vite va via via aumen-
tando. La chimica inorganica descrittiva & importante; essa tratta dello
studio delle proprieta degli elementi e dei composti, e di come tali proprieta
siano correlate ai principi chimici fondamentali. La nostra civilta dipende da
molti elementi, in particolare i metalli. Molti di questi elementi svolgono ruoli
unici nei processi ambientali e biologici. Nella nostra societa usa-e-getta, molti
dei metalli piu utilizzati sono riciclati, tuttavia per la maggior parte dei metalli
la percentuale di riciclo ¢ generalmente bassa. Ovviamente le risorse di cui
disponiamo nel nostro pianeta sono limitate; ¢ quindi necessario riciclare i
metalli, in modo che le generazioni future abbiano a loro disposizione questi
elementi. In questo testo sono trattate le conoscenze fondamentali riguardo
agli elementi in alcuni dei contesti ambientali, biochimici e industriali. Il testo,
nello specifico, presenta le seguenti caratteristiche principali:

Focus: Ogni capitolo comincia con un Focus, un aspetto della chimica inorga-
nica che in un modo o nell’altro ci riguarda. Ognuno di questi Focus ¢ scritto
per indurre alla riflessione e si lega a un argomento trattato nel capitolo.

Esempi con risposta: Sparsi nei capitoli sono presenti numerosi esempi di
domande ed esercizi a cui viene fornita una risposta commentata, in modo che
gli studenti comprendano come applicare i principi che vengono trattati.
Nuove scoperte: Sono presenti nel testo importanti scoperte, relativamente
recenti, per mostrare che la chimica inorganica ¢ “viva” e molto rilevante nei
progressi compiuti nel ventunesimo secolo.

Diagrammi: Per comprendere meglio quali specie di un elemento o ione sono
predominanti in specifiche condizioni, ¢ stato utilizzato I’approccio visivo di
diagrammi, dove appropriato.

MATERIALE ONLINE
Sono disponibili online:

= Capitolo 24 Anche se lantanidi, attinidi ed elementi piu pesanti
suscitano un crescente interesse, la loro trattazione in corsi di base ¢ abba-
stanza infrequente. Tale materiale ¢ dunque disponibile solo in formato
digitale.

s Appendici 9 e 10 Per risparmiare spazio e carta, queste lunghe
appendici sono disponibili solo in formato digitale.
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DEDICHE

a chimica ¢ frutto dell’impegno umano. Le nuove scoperte sono il risultato

del lavoro di individui e gruppi di persone entusiasti, che vogliono esplo-
rare il mondo molecolare. Nella speranza che il lettore rimanga affascinato
dalla chimica inorganica come lo siamo stati noi, abbiamo deciso di dedicare
questo libro a due persone che, per motivi molto differenti, non hanno ricevuto
il Premio Nobel come riconoscimento ai loro contributi scientifici.

Henry Moseley (1887-1915)

Anche se ¢ Mendeleev a essere riconosciuto come artefice
della tavola periodica, la sua versione si basava sull’aumento
delle masse atomiche. In alcuni casi era quindi necessario
invertire I’ordine degli elementi affinché le proprieta fossero
coerenti con la posizione. Fu uno scienziato inglese, Henry
Moseley, che pose la tavola periodica su basi piu solide at-
traverso la sua scoperta che, bombardando gli elementi con
elettroni, ognuno di essi emetteva dei raggi X di lunghezza
d’onda caratteristica. Le lunghezze d’onda ottenute erano
infatti correlate tra loro per mezzo di una formula che as-
segnava un numero intero a ogni elemento. Oggi sappiamo
che tale numero ¢ il numero di protoni dell’elemento. Sta-
bilendo i numeri atomici degli elementi, i chimici furono in
grado di comprendere 1’organizzazione corretta della tavola
periodica. Purtroppo, Moseley rimase ucciso nella battaglia
di Gallipoli nella prima guerra mondiale. Di conseguenza,
uno degli scienziati pit promettenti del ventesimo secolo
mori all’eta di 27 anni. Il famoso scienziato americano Ro-
bert Milliken ha commentato: “Se la guerra in Europa aves-
se avuto come conseguenza anche solo la perdita di questa
giovane vita, questa, da sola, la renderebbe uno dei crimini
piu orrendi e irreparabili della storia”. Purtroppo, il Pre-
mio Nobel ¢ conferito solo agli scienziati in vita. Nel 1924
fu avanzata l'ipotesi per un Premio Nobel per la scoperta
dell’elemento 43, a cui si voleva assegnare il nome moseleio;
sfortunatamente tale scoperta risultd infondata, proprio
attraverso 'uso del metodo sviluppato grazie alla scoperta
dello stesso Moseley. N.d.R.: L’elemento 43, il tecnezio-97,
verra scoperto solo 13 anni dopo da Carlo Perrier ed Emilio
Segre presso I’allora Regio Istituto di Fisica, oggi Diparti-
mento di Fisica e Chimica, dell’Universita di Palermo.

Xix



XX Dediche

Lise Meitner (1878-1968)

Negli anni trenta del secolo scorso gli scienziati bombarda-
vano gli atomi degli elementi pesanti come I’'uranio con par-
ticelle subatomiche nel tentativo di scoprire nuovi elementi
ed estendere cosi la tavola periodica. La scienziata Lise Mei-
tner condivise con Otto Hahn la guida del gruppo di ricerca
tedesco che lavorava alla sintesi di nuovi elementi. Tale
gruppo supponeva di aver sintetizzato nove nuovi elementi.
Poco dopo la scoperta, Meitner fu costretta a fuggire dalla
Germania a causa delle sue origini ebree e si trasferi in Sve-
zia. Hahn gli riferi che uno dei nuovi elementi aveva un com-
portamento chimico analogo al bario. Durante una famosa
“passeggiata sulla neve” con suo nipote, il fisico Otto Frisch,
Meitner intui che un nucleo di un atomo poteva dividersi in
due, proprio come una goccia d’acqua. Non c’era quindi da
sorprendersi che il nuovo elemento si comportava come il
bario: era proprio il bario! In questo modo nacque il concetto
di fissione nucleare, ¢ lei informo¢ Hahn della sua idea.
Quando Hahn scrisse I’articolo riguardante la scoperta, a
malapena menziono il contributo fondamentale di Meitner e
Frisch. Di conseguenza furono Hahn e il suo collega, Fritz Strassmann, che
ricevettero il Premio Nobel, mentre il geniale intuito della Meitner fu ignorato.
Solo di recente Lise Meitner ha ricevuto il plauso che merita, all’elemento 109
¢ stato infatti assegnato un nome in suo onore: meitnerio.

Letture di approfondimento

Heilbron, J.L., H.G.J. Moseley, University of California Press, Berkeley, CA, 1974.
Rayner-Canham, M.F,, and Rayner-Canham, G.W. Women in Chemistry:
Their Changing Roles from Alchemical Times to the Mid-Twentieth Century,
Chemical Heritage Foundation, Philadelphia, PA, 1998.

Sime, R.L., Lise Meitner: A Life in Physics, University of California Press,
Berkeley, CA, 1996.

Weeks M.E., and Leicester, H.M. Discovery of the Elements, Journal of
Chemical Education, Easton, PA, 7th edition, 1968.



CAPITOLO 5

IL LEGAME IONICO
E LE STRUTTURE
DEI SOLIDI IONICI

Tc | Ru ; Pd { Cd In § Sb

Os Ir Hg | Tl Bi P
Un legame chimico si pud formare anche per trasferimento di elettroni e conse-
guente attrazione elettrostatica tra le particelle cariche. Nei corsi di chimica ge-
nerale si sottintende in genere che ci sia una divisione rigida tra legame ionico e
legame covalente. In realtd esistono pochi casi di composti “puramente ionici”, e 5.1 Il modello ionico e le
il legame chimico deve piuttosto essere visto come un continuum tra gli estremi dimensioni degli ioni
rappresentati dai legami covalente, ionico e metallico. 5.2 Polarizzazione e
covalenza
R L. 5.3 Strutture dei cristalli
Focus: Superconduttivitd e composti ionici ionici
Gli strumenti per la risonanza magnetica sono ormai di uso comune 5.4 Sali idrati
in medicina. Questi strumenti — e lo strumento equivalente usato in 5.5 Composti ionici

ricerca, lo spettrometro per risonanza magnetica nucleare (NMR) —
richiedono 1'uso di intensi campi magnetici. Per generare questi
campi magnetici sono essenziali elettromagneti con bobine costitui-

isostrutturali
5.6 Perovskiti

te da superconduttori. Per “superconduttori” intendiamo sostanze 5.7 Spinelli
in cui una corrente di elevata intensita possa passare con resistenza 5.8 Difettie composti non
quasi nulla. Se si impiegasse un elettromagnete ordinario, il calore stechiometrici

generato causerebbe il riscaldamento del magnete, fino alla possibi-
le fusione del metallo. Per raffreddare il magnete, cosi da renderlo
superconduttore, si fa uso dell’elio liquido (punto di ebollizione 4.2
K). L’elio liquido & molto costoso e, come vedremo nel Capitolo 18,
le riserve mondiali di elio si stanno riducendo. Urge quindi la neces-
sita di sintetizzare materiali che superconducano a temperature
molto piu elevate — lo scopo finale ¢ di produrre materiali che siano
superconduttori a temperatura ambiente.

Il fenomeno della superconduttivita fu scoperto da Kamerlingh
Onnes. Egli scopri che al di sotto di 4 K il mercurio diventava super-
conduttore. Nel 1962 furono identificate leghe superconduttrici di
niobio. Oggi quasi tutte le macchine per la risonanza magnetica che
si trovano negli ospedali impiegano il composto intermetallico Nb-
3Sn, che diventa superconduttore al di sotto dei 30 K. Si tratta pero
di una temperatura ancora molto bassa, che richiede elio liquido per
il raffreddamento.

La scoperta pitt importante fu fatta in Svizzera nel 1985, quando
George Bedornz e K. Alex Miiller prepararono un ossido contenen-
te ioni lantanio, bario e rame(II). Questo composto diventa super-
conduttore a 35 K e Bedornz e Miiller ricevettero il Premio Nobel
per la Fisica per il loro lavoro. Da allora sono state sintetizzate nu-
merose famiglie di superconduttori a base di composti ionici com-
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plessi. I composti che mostrano la pil alta temperatura di superconduzione
(superconducono a 133 K) hanno al momento tre caratteristiche comuni: le lo-
ro strutture sono caratterizzate da un reticolo cristallino simile a quello della
perovskite (vedi Paragrafo 5.6); contengono sempre ossigeno in quantita infe-
riore rispetto a quella stechiometrica; uno degli ioni metallici ¢ in genere il ra-
me. La figura sottostante mostra una rappresentazione schematica del cristal-
lo del superconduttore di formula YBa,Cu;0,, abbreviato comunemente in
YBCO. Si tratta in assoluto del primo composto sintetizzato che mostri il fe-
nomeno della superconduttivita a una temperatura superiore a quella del pun-
to di ebollizione dell’azoto. I superconduttore piu largamente usato ¢ il
TBCCO-2223, di composizione T, Ba,Ca,Cu;0y. L’acceleratore di particelle
detto “Large Hadron Collider” (in italiano “grande collisore di adroni”) fa
uso di decine di chilometri di cavi elettrici superconduttori di TBCCO-2223.

Reticolo ionico, in forma schema-
fica, del composto supercondut-
tore YBa,Cu;O;.

5.1 Il modello ionico e le dimensioni degli ioni

Alla temperatura ambiente le sostanze covalenti possono essere solide, liqui-
de o gassose. Tutti i composti ionici convenzionali, invece, sono solidi, e han-
no le seguenti proprieta:

1. T cristalli dei composti ionici sono duri e fragili.
2. I composti ionici hanno punti di fusione elevati.

3. Allo stato fuso (se il riscaldamento non causa la loro decomposizione) i
composti ionici conducono I’elettricita.

4. Molti composti ionici si sciolgono in solventi molto polari (come 1’acqua)
e, quando questo avviene, le soluzioni conducono ’elettricita.

Secondo il modello puramente ionico uno o piu elettroni tra quelli pit
esterni sono stati trasferiti completamente dall’elemento a piu bassa elettro-
negativita a quello piu elettronegativo. Tale modello ¢ sorprendentemente
utile, benché sia generalmente evidente un certo grado di covalenza anche
quando la differenza di elettronegativita ¢ molto elevata.



5.1 Il modello ionico e le dimensioni degli ioni

Un confronto dei raggi atomici e ionici

Nel Capitolo 2 abbiamo visto come la dimensione degli atomi decresca andan-
do da sinistra a destra all’interno di un periodo, come risultato dell’aumento di
Z.. La trasformazione degli atomi in ioni, perod, ha come effetto una significati-
va variazione nelle dimensioni relative. L’esempio piu significativo ¢ quello dei
metalli dei gruppi principali, per i quali la formazione di un catione comporta in
genere la rimozione di tutti gli elettroni esterni (di valenza). Il catione che si for-
ma possiede solo elettroni interni. Il catione, in tal modo, sara molto piu picco-
lo dell’atomo di origine. Il raggio del sodio metallico, per esempio, ¢ 186 pm,
mentre il raggio del suo catione ¢ solo 116 pm. La dimensione, in realta, si riduce
in modo piu consistente. Il volume di una sfera ¢ dato dalla formula V = %wr3.
La riduzione del raggio del sodio per effetto della ionizzazione, quindi, si tra-
duce in un volume ionico pari a un quarto del volume dell’atomo neutro!

Nel caso degli anioni ¢ vero il contrario: lo ione negativo ¢ piu grande
dell’atomo corrispondente. Il raggio covalente dell’atomo di ossigeno, ad
esempio, ¢ 74 pm, mentre il raggio dello ione ossido ¢ 124 pm; di conseguenza
il volume cresce di cinque volte. Si puo affermare che, per aggiunta di elettro-
ni, il valore di Z. per ogni elettrone esterno sia inferiore, e che di conseguen-
za ’attrazione nucleare sia pitt debole. Ci sara inoltre una repulsione addizio-
nale di tipo inter-elettronico tra I’elettrone aggiunto e quelli presenti nell’ato-
mo. L’anione sara quindi pitt grande dell’atomo neutro.

E importante sottolineare che i raggi ionici non si possono misurare diret-
tamente, e che i loro valori sono quindi soggetti a errori (di natura modellisti-
ca). Possiamo misurare, per esempio, in maniera accurata la distanza tra i cen-
tri di due ioni sodio e cloruro in un cristallo di cloruro di sodio, ma otteniamo
cosi la somma dei due raggi. La scelta di come ripartire la distanza tra i due io-
ni si basa pil sulla formula empirica che su una misurazione definitiva. In que-
sto testo faremo uso, per consistenza interna, dei valori dei raggi ionici noti co-
me valori di Shannon-Prewitt.

Andamenti nei raggi ionici

I raggi dei cationi divengono ancora piu piccoli se gli ioni hanno carica multi-
pla. Possiamo vederlo analizzando il gruppo di ioni isoelettronici riportati
nella Tabella 5.1. Ognuno di questi ioni possiede un totale di 10 elettroni
(1s2s*2p°). La sola differenza & nel numero di protoni nel nucleo: maggiore &
il valore del numero di protoni, pilu elevata la carica nucleare efficace, Z., e
piu forte I’attrazione tra elettroni e nucleo, quindi piu piccolo ¢ lo ione.

La Tabella 5.2 mostra che, per una serie isoelettronica di anioni, pilt picco-
la ¢ la carica nucleare e piu grande ¢ I’anione. Questi anioni sono isoelettroni-
ci con i cationi della Tabella 5.1, e mostrano come gli anioni siano molto pill

TABELLA 5.1 Raggi di alcuni TABELLA 5.2 Raggi di alcuni
cationi isoelettronici anioni isoelettronici
del periodo 3 del periodo 2

Ione Raggio (pm) Ione Raggio (pm)

Na* 116 N 132

Mg** 86 o+ 124

AP* 68 F~ 117
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TABELLA 5.3 Raggi di anioni del TABELLA 5.4 Punti di fusione degli

gruppo 17 alogenuri di potassio

Ione Raggio (pm) Composto Punto di fusione (°C)
F 119 KF 857

Cl™ 167 KCl 772

Br- 182 KBr 735

I 206 KI 685

grandi dei cationi. In generale, quindi, si puo affermare che i cationi metallici
siano molto piu piccoli degli anioni dei non-metalli.

Nel Capitolo 2, Paragrafo 2.5, abbiamo mostrato come il raggio atomico
aumenti scendendo lungo un gruppo. Anche i raggi di cationi e anioni aventi
la stessa carica aumentano scendendo lungo un gruppo. La Tabella 5.3. ripor-
ta i valori per gli anioni del gruppo 17.

Andamento dei punti di fusione

Il legame ionico ¢ il risultato dell’attrazione di uno ione da parte degli ioni
circostanti all’interno del solido cristallino. Nel processo di fusione le forti at-
trazioni tra gli ioni devono essere, in parte, superate affinché gli ioni si possa-
no muovere liberamente nella fase liquida. Piu piccolo sara lo ione, pill corte
le distanze inter-ioniche; I’attrazione elettrostatica sara piu forte e il punto di
fusione maggiore. Come mostrato nella Tabella 5.3, i raggi degli anioni au-
mentano scendendo lungo il gruppo degli alogeni. All’aumento dei raggi cor-
risponde una diminuzione del punto di fusione degli alogenuri di potassio
(Tabella 5.4).

Un secondo fattore, in genere cruciale, nella determinazione dei punti di
fusione ¢ la carica ionica: piu elevata la carica, piu elevato il punto di fusione.
L’ossido di magnesio (Mg**O%) ha quindi un punto di fusione di 2800 °C,
mentre il fluoruro di sodio (Na*F"), isoelettronico, fonde solamente a 993 °C.

5.2 Polarizzazione e covalenza

Nella maggior parte dei casi i composti formati da metalli e non-metalli mo-
strano caratteristiche ioniche; esistono perd numerose eccezioni. Tali ecce-
zioni si presentano quando gli elettroni piu esterni degli anioni sono attratti
cosi fortemente dai cationi che il legame acquista un significativo carattere co-
valente; la densita elettronica, cioe, ¢ distorta nella direzione del catione.
Questa distorsione dalla forma sferica di un anione ideale prende il nome di
polarizzazione.

Il chimico Kasimir Fajans sviluppo0 le seguenti regole, che riassumono i fat-
tori che favoriscono la polarizzazione degli ioni e quindi I'aumento della cova-
lenza nell’interazione:

1. un catione piccolo e con carica elevata sara pill polarizzante.
2. Un anione grande e con carica elevata sara pil facilmente polarizzabile.

3. I cationi che non possiedono configurazione elettronica dei gas nobili sa-
ranno piul polarizzanti.



5.2 Polarizzazione e covalenza

Una misura del potere polarizzante di un catione ¢ la densita di carica.
La densita di carica ¢ la carica dello ione (numero di unita di carica per la
carica del protone in Coulomb) diviso il volume dello ione. Lo ione sodio,
per esempio, ha carica pari a 1+ e un raggio ionico di 116 pm. Usando raggi
in millimetri per ottenere un valore della densita di carica senza parte espo-
nenziale, si ha

o 1 X (1.60 X 107 C) ,3
densita di carica = — = 3 = 24 C-mm
(3) X 7 X (1.16 X 10” ‘mm)

In maniera analoga si puo calcolare per lo ione alluminio una densita di ca-
rica di 364 C-mm . Con una densita di carica molto maggiore lo ione allumi-
nio ¢ molto pil polarizzante dello ione sodio, ed ¢ quindi pit probabile che fa-
vorisca nei suoi legami un carattere covalente.

La prima regola di Fajans

Poiché il raggio ionico ¢ dipendente dalla carica ionica, ci accorgiamo che il
valore della carica cationica ¢ spesso una buona guida nel determinare il gra-
do di covalenza di un semplice composto contenente uno ione metallico.
All’aumentare della carica del catione aumenta la probabilita di un comporta-
mento covalente.

Uno dei modi pitt ovvii per distinguere tra comportamento ionico e cova-
lente & osservare i punti di fusione: quelli dei composti ionici (e dei solidi co-
valenti reticolari) sono normalmente elevati; quelli dei solidi molecolari, for-
mati da piccole molecole con legame covalente, sono generalmente bassi.
Questo diverso comportamento ¢ illustrato da un confronto tra due ossidi di
manganese: 1’ossido di manganese(II), MnO, e 1’ossido di manganese(VII),
Mn,0. Studi sperimentali hanno confermato che I'ossido di manganese(II),
alto fondente, forma un solido ionico, mentre I’ossido di manganese(VII), che
¢ liquido a temperatura ambiente, consiste di molecole Mn,0O; nelle quali gli
atomi sono legati tra loro in modo covalente. La Tabella 5.5 mostra come il
manganese(1I), ionico, possieda una densita di carica molto pil bassa del man-
ganese(VII), covalente.

La seconda regola di Fajans

Per illustrare gli effetti della dimensione degli anioni, possiamo confrontare il
fluoruro di alluminio (p.f. 1290 °C) e lo ioduro di alluminio (p.f. 190 °C). Lo io-
ne fluoruro, con un raggio ionico di 117 pm, ¢ molto piu piccolo dello ione io-
duro, dal raggio di 206 pm. Lo ione ioduro, infatti, ha un volume che ¢ oltre
cinque volte quello dello ione fluoruro. Lo ione fluoruro non puo essere pola-
rizzato in maniera significativa dallo ione alluminio. Il legame, quindi, ¢ essen-

TABELLA 5.5 Confronto tra I'ossido di manganese(ll) e I'ossido di
manganese(VIl)

Densita di carica
Composto Punto di fusione (°C) del catione (C-mm °) Tipo di legame

MnO 1785 84 Tonico
Mn,0, 6 1238 Covalente
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zialmente ionico. La densita elettronica dello ione ioduro, pero, ¢ distorta ver-
so lo ione alluminio, ad alta densita di carica, al punto tale che il legame diven-
ta covalente e si formano molecole di alluminio ioduro.

La terza regola di Fajans

La terza regola di Fajans riguarda i cationi che non possiedono la configura-
zione elettronica tipica dei gas nobili. La maggior parte dei cationi comuni,
come il calcio, ¢ caratterizzata da una configurazione elettronica uguale a
quella del gas nobile che lo precede ([Ar], nel caso del calcio). Per altri ioni,
perd, non & cosi. Lo ione argento (Ag"), che ha configurazione elettronica
[Kr]4d", & un buon esempio (altri esempi sono Cu”, Sn** e Pb**). Poiché il
raggio ionico (quindi la densita di carica) dello ione argento ¢ simile a quella
dello ione potassio, in un modello puramente ionico del legame ci aspetterem-
mo che i1 punti di fusione dei sali di argento fossero simili a quelli dei corri-
spondenti sali di potassio. La Tabella 5.6 mostra invece come il punto di fusio-
ne del cloruro di argento sia considerevolmente inferiore a quello del cloruro
di potassio.

Spieghiamo il punto di fusione relativamente basso del cloruro di argento
nel modo seguente. Nella fase solida gli ioni argento e gli ioni alogenuro sono
disposti in un reticolo cristallino, come in qualsiasi altro composto “ionico”.
Tuttavia, si puo sostenere che la ridistribuzione di densita elettronica tra ogni
anione e catione sia sufficientemente elevata, cosi che possiamo considerare
che il processo di fusione coinvolga la formazione di molecole vere e proprie
di alogenuro d’argento. L’energia necessaria per passare da un solido parzial-
mente ionico a molecole legate in maniera covalente ¢ inferiore a quella ne-
cessaria per il normale processo di fusione di un composto ionico.

Un’altra indicazione di una differenza nei comportamenti di legame dello
ione potassio e dello ione argento viene dalla loro diversa solubilita in acqua.
Tutti gli alogenuri di potassio sono molto solubili in acqua, mentre cloruro,
bromuro e ioduro di argento sono essenzialmente insolubili in acqua. Il pro-
cesso di dissoluzione, come vedremo pill avanti, comporta I'interazione delle
molecole d’acqua polari con gli ioni carichi. Se la carica ionica ¢ diminuita da
una parziale condivisione di elettroni (legame covalente) tra ’anione e il ca-
tione, I'interazione ione-acqua sara piu debole e la tendenza a dissolversi sara
inferiore. Tuttavia, a differenza degli altri alogenuri d’argento, il fluoruro di
argento ¢ solubile in acqua. Questa osservazione ¢ in accordo con la seconda
regola Fajans, secondo la quale il fluoruro di argento deve possedere la pola-
rizzazione piu debole e quindi il legame maggiormente ionico tra tutti gli alo-
genuri d’argento.

Spesso, in chimica, vi ¢ pitt di un modo per spiegare un fenomeno osserva-
to. Questo ¢ certamente vero per le proprieta dei composti ionici. Per illustra-
re questo punto, possiamo confrontare gli ossidi e i solfuri di sodio e di rame(I).

TABELLA 5.6 Confronto fra i cloruri di potassio e di argento

Densita di carica
Composto Punto di fusione (°C)  del catione (C-mm 3 Tipo di legame

KCI 770 11 Tonico
AgCl 455 15 Parzialmente covalente




5.2 Polarizzazione e covalenza

Entrambi questi cationi hanno circa lo stesso raggio, eppure I’ossido di sodio e
il solfuro di sodio si comportano come tipici composti ionici, reagendo con I’ac-
qua, mentre I'ossido di rame(I) e il solfuro di rame(I) sono quasi completa-
mente insolubili in acqua. Possiamo spiegare questo comportamento in termi-
ni della terza regola di Fajans; quando, ciog, il catione possiede una configura-
zione elettronica che non ¢ quella di un gas nobile, si osserva una maggiore ten-
denza alla covalenza. In alternativa si puo utilizzare il concetto di elettronega-
tivita di Pauling, e dire che la differenza di elettronegativita di 2.5 per 1’ossido
di sodio ¢ indice di un legame prevalentemente ionico, mentre il valore di 1.5
per I'ossido di rame(I) ¢ indice di un legame a maggior carattere covalente.

Il confine ionico-covalente

Come gia discusso nel Capitolo 3, Paragrafo 3.14, purtroppo non & sempre
possibile prevedere con certezza un “confine” tra il comportamento ionico e
covalente dei composti solidi di metalli e non-metalli. Per la prima regola di
Fajans ’aumento della carica del catione, per esempio, produce un aumento
della densita di carica, che favorira un comportamento covalente. Tuttavia,
come previsto dalla seconda regola di Fajans, anche I’anione ha un ruolo: per-
tanto, all’aumentare dello stato di ossidazione del metallo, lo ioduro ¢ solita-
mente ’alogenuro che possiede il pitt basso punto di fusione, seguono quindi
il bromuro, poi il cloruro e infine il fluoruro e ’ossido.

In soluzione acquosa i cationi 1+ e 2+ si trovano di frequente come catio-
ni idrati, il catione 2+ in particolare come unit ottaedrica [M(OH,)s]*". Per
ioni 3+, [M(OH,)¢]**, come I’alluminio (vedi Capitolo 13, Paragrafo 13.6) e il
ferro(I1T) (vedi Capitolo 20, Paragrafo 20.8), i cationi idrati perdono facilmen-
te uno ione idrogeno per dare una soluzione acida e ridurre in questo modo la
carica dell’aggregato:

[M(OH,)¢]** (aq) + H,O(l) = [M(OH,)s(OH)]**(ag) + H;0"(aq)

Non esistono in soluzione ioni metallici liberi con stati di ossidazione elevati.
Gli ioni metallici, in questi casi, possono ridurre la carica attraverso la forma-
zione di osso-cationi. Il vanadio(IV), ad esempio, in soluzione si trova come
ione vanadile, [VO]**, o, pitl correttamente, [VO(OH,)s]** (vedi Capitolo 20,
Paragrafo 20.4), mentre 1’'uranio(VI) si trova sotto forma di ione uranile idra-
tato, [UO,]** (vedi Capitolo 24, Paragrafo 24.3). Linee guida per il tipo di le-
game sono riportate nella Tabella 5.7.

TABELLA 5.7 Linee guida per il tipo di legame in composti ionici

Carica formale
dello ione metallico Tipo di legame predominante

+1 Tonico, eccetto che per alcuni composti del litio
+2 Tonico, eccetto che per alcuni composti di magnesio e berillio
+3 Covalente, eccetto che per alcuni ossidi e fluoruri di elementi

piu pesanti e cationi idrati

+4, +5 Covalente, eccetto che per alcuni ossidi e fluoruri di elementi
pill pesanti e ossocationi

+6 Covalente, eccetto che per alcuni ossidi e ossocationi
+7 +8 Covalente
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M

FIGURA 5.1 Rappresen-
tazione di sei anioni che
circondano un catione
(il trafteggio rappresenta
due anioni, posti uno so-
pra e uno softto il piano
del foglio).

Esempio 5.1

Il tallio forma due serie di composti, uno in cui ha carica 1+, e uno in
cui ha carica 3+. Scrivere la formula di un alogenuro di tallio che sia
presumibilmente (a) ionico o (b) covalente.

Risposta

a) Lo ione metallico dovrebbe avere la carica piu bassa e dovrebbe
essere combinato con lo ione alogenuro meno polarizzabile, il fluoruro.
La risposta ¢ fluoruro di tallio(I), TIF.

b) Lo ione metallico dovrebbe avere la carica piu alta e dovrebbe
essere combinato con lo ione alogenuro piu polarizzabile, lo ioduro. La
risposta ¢ ioduro di tallio(I1T), T1I;. m

5.3 Strutture dei cristalli ionici

Nel Capitolo 4, Paragrafo 4.3, abbiamo mostrato quattro diverse modalita
di impaccamento per gli atomi metallici. Gli stessi modi di impaccamento
sono comuni anche tra i composti ionici. Generalmente gli anioni sono
molto pil grandi dei cationi; quindi, sono gli anioni che formano I'impal-
catura del cristallo e i cationi pil piccoli si inseriscono nelle cavita (chia-
mate interstizi) tra gli anioni. Prima di discutere i particolari tipi di impac-
camento, tuttavia, dovremmo considerare i principi generali che si appli-
cano ai reticoli ionici:

1. Siassume che gli ioni siano sfere cariche, incomprimibili e non polarizza-
bili. Abbiamo visto che di solito c¢’¢ un certo grado di covalenza in tutti i com-
posti ionici, ma il modello a sfere rigide sembra funzionare abbastanza bene
per la maggior parte dei composti che classifichiamo come ionici.

2. Gliioni cercano di circondarsi del maggior numero possibile di ioni di ca-
rica opposta, alla minore distanza possibile. Questo principio ¢ di particola-
re importanza per il catione. Solitamente, nel tipo di impaccamento adotta-
to, il catione ¢ grande a sufficienza perché gli anioni possano circondarlo sen-
za toccarsi tra loro.

3. 1l rapporto catione-anione deve riflettere la composizione chimica del
composto. Ad esempio la struttura cristallina del cloruro di calcio, CaCl,, de-
ve essere costituita da una impalcatura di anioni cloruro, e da un numero di
ioni calcio, pari alla meta di quello degli anioni, che va a collocarsi negli in-
terstizi del reticolo cristallino.

Impaccamento degli ioni e rapporto tra i raggi

Come indicato al punto 2, il tipo di impaccamento adottato da un composto
ionico ¢ determinato in genere dalle dimensioni relative degli ioni. La Figu-
ra 5.1 mostra quattro sfere piene, che rappresentano gli anioni di parte di una
disposizione cubica a corpo centrato, e un cerchio tratteggiato che rappre-
senta gli anioni al di sotto e al di sopra del piano. Per adattarsi esattamente
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TABELLA 5.8 Intervalli dei rapporti tra i raggi corrispondenti a diversi
arrangiamenti ionici

Intervallo nei valori /v~ Numero di coordinazione preferito Nome
0.732-0.999 8 Cubico
0.414-0.732 6 Ottaedrico
0.225-0.414 4 Tetraedrico

nello spazio tra questi sei anioni, il catione deve avere le dimensioni della sfe-
ra piu piccola ombreggiata. Utilizzando il teorema di Pitagora, calcoliamo un
rapporto ottimale raggio-catione/raggio-anione pari a 0.414. Il valore numeri-
co, r"/r”, & detto rapporto tra i raggi.

Se il catione ¢ piu grande, e il rapporto tra i raggi ¢ superiore al valore ot-
timale di 0.414, gli anioni saranno costretti ad allontanarsi I’'uno dall’altro. In
realta questo accade nella maggioranza dei casi, determinando I’aumento del-
la distanza anione-anione e la conseguente diminuzione della repulsione elet-
trostatica tra gli anioni. Tuttavia, quando il rapporto tra i raggi raggiunge il va-
lore di 0.732, diventa possibile per otto anioni disporsi intorno al catione. Vi-
ceversa, se il rapporto tra i raggi ¢ inferiore a 0.414, gli anioni saranno a con-
tatto e 1 cationi “balleranno” all’interno della cavita centrale, risultando lo
spazio a loro disposizione troppo grande. Perché questo non avvenga, gli anio-
ni si riorganizzano per formare cavita piu piccole, circondate da soli quattro
anioni. Una sintesi dei rapporti tra i raggi e delle diverse disposizioni geome-
triche degli anioni intorno ai cationi ¢ indicata nella Tabella 5.8.

Arrangiamento cubico

Il modo migliore per descrivere un reticolo ionico ¢ quello di considerare pri-
ma la disposizione degli anioni, e poi di valutare il numero di coordinazione
degli interstizi nel reticolo anionico. I tipo di impaccamento di anioni che puo
ospitare i cationi pill grandi ¢ quello cubico semplice. Se consideriamo la sem-
plice cella elementare cubica, con una sfera su ciascun vertice del cubo, il ca-
tione puo trovare posto al centro del cubo.

L’esempio classico ¢ il cloruro di cesio, e questo composto da il nome al ti-
po di reticolo. Gli anioni cloruro adottano una semplice disposizione cubica
degli anioni, con i cationi posti ognuno al centro di un cubo. Nel cloruro di ce-
sio il rapporto tra i raggi ¢ pari a 0.934; cio indica che i cationi sono sufficien-
temente grandi da evitare che gli anioni siano a contatto tra loro. Per rendere
piu chiara la disposizione relativa degli ioni nei corrispondenti solidi ionici,
utilizzeremo delle rappresentazioni schematiche ottenute sovrapponendo ai
reticoli cristallini, idealmente formati da punti, piccole sfere rappresentanti gli
ioni. In questi diagrammi le sfere che rappresentano gli ioni sono state ridotte
in dimensione e sono state inserite linee continue per rappresentare i punti di
contatto tra gli ioni. I diagrammi reticolari mostrano i numeri di coordinazio-
ne degli ioni piu chiaramente di quanto non facciano le rappresentazioni con
riempimento dello spazio (space-filling). Danno pero I'impressione, errata,
che il solido ionico sia costituito perlopill da spazio vuoto, mentre nella realta
¢ costituito da ioni di raggio anche molto diverso e impaccati in maniera com-
patta. La struttura del cloruro di cesio, secondo questo tipo di diagramma, ¢
mostrata nella Figura 5.2.

@c' eclr

FIGURA 5.2 Struttura del
cloruro di cesio. [Adatta-
fo da A.EWells, Structural
Inorganic Chemistry, 5th ed.
(New York: Oxford University
Press, 1984), p. 246].
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FIGURA 5.3 Cella elementao-
re del cloruro di cesio [Adat-
tata da G. Rayner-Canham et
al., Chemistry: A Second Course
(Don Mills, ON, Canada: Addi-
son-Wesley, 1989), p. 72].

FIGURA 5.4 Particolare
della struttura del fluoruro
di calcio.

Nel Capitolo 4, Paragrafo 4.4, abbiamo visto che per i metalli, quando
il tipo di impaccamento cristallino e la densita sono noti, ¢ possibile cal-
colare il raggio metallico dell’elemento. Per i composti ionici che adotta-
no la struttura del cloruro di cesio possiamo, analogamente, determinare
le dimensioni della cella unitaria e dei raggi ionici di uno o I’altro degli
ioni.

La cella elementare del cloruro di cesio ¢ mostrata in Figura 5.3; essa con-
tiene uno ione cesio e 8(18) ioni cloruro. Ogni cella unitaria, quindi, contiene
in totale un’unita formula (corretta stechiometria del composto cristallino).
Il catione cesio separa gli anioni cloruro, in modo tale che gli ioni sono a con-
tatto lungo una diagonale del cubo, da un vertice a quello opposto passando
per il centro. Questa diagonale ha una lunghezza pari alla somma di due rag-
gi anionici e due raggi cationici.

Se il rapporto stechiometrico catione:anione non ¢ 1:1, allora lo ione pre-
sente in quantita minore occupa solo una parte degli spazi. Un buon esem-
pio & il fluoruro di calcio, CaF,, in cui il rapporto catione:anione & 1:2. E que-
sta la struttura della fluorite, che prende il nome dal minerale fluoruro di cal-
cio. Ogni ione calcio ¢ circondato da otto ioni fluoruro, analogamente a
quanto si osserva nella struttura del cloruro di cesio. Tuttavia, solo una ogni
due possibili posizioni € occupata dai cationi (la seconda rimane vuota), e il
rapporto stechiometrico catione:anione, pari a 1:2, ¢ in tal modo conservato
(Figura 5.4).

E possibile anche avere cationi e anioni nel rapporto 2:1, come si osserva
nell’ossido di litio. La struttura si basa nuovamente sul reticolo del cloruro di
cesio, ma questa volta un sito anionico ogni due ¢ vuoto. Poiché i siti intersti-
ziali non occupati nella struttura dell’ossido di litio sono opposti a quelli la-
sciati vuoti nella struttura del fluoruro di calcio (fluorite), il nome dato a que-
sta tipo di struttura ¢ antifluorite.

Arrangiamento ottaedrico

Quando il rapporto tra i raggi scende sotto 0.732, gli anioni nella struttu-
ra del cloruro di cesio non sono pill tenuti separati per effetto dei cationi.
Le potenziali repulsioni tra gli anioni fanno si che la geometria ottaedrica
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FIGURA 5.6 Struttura del
cloruro di sodio, [Adatta-
ta da A. F Wells, Structural
Inorganic Chemistry, 5th ed.
(New York: Oxford University
Press, 1984), p. 239].

FIGURA 5.5 | primi due strati
dell'impaccamento compat-
to di anioni; i cerchi vuoti (O)
indicano le cavitd oftaedriche
nelle quali possono trovare
posto i cationi.

diventi la preferita. Con un rapporto tra i raggi di questo tipo sei anioni
possono disporsi intorno a un catione senza essere a contatto tra loro (ve-
di Figura 5.1). La disposizione reale degli anioni ¢ basata sull’impacca-
mento cubico compatto, nel quale sono presenti cavita ottaedriche e te-
traedriche. Nella Figura 5.5, che mostra la matrice di anioni, i cerchi “O”
indicano la posizione delle cavita ottaedriche nelle quali i cationi possono
sistemarsi.

Nel caso ottaedrico tutte le cavita ottaedriche sono riempite con cationi e
tutte le cavita tetraedriche sono vuote. Il cloruro di sodio adotta questa par-
ticolare disposizione degli ioni e da il nome alla struttura. Nella cella elemen-
tare — la piut piccola unita rappresentativa dell’intera struttura — gli anioni
cloruro sono posizionati ai nodi di un reticolo cubico a facce centrate. Tra
ogni coppia di anioni ¢ presente un catione. Poiché i cationi agiscono come
separatori di anioni, cationi e anioni si alternano lungo gli spigoli del cubo.
La struttura del cloruro di sodio (Figura 5.6) mostra come ogni ione sodio sia
circondato da sei ioni cloruro e ogni anione cloruro sia circondato da sei ioni
sodio.

La cella elementare del cloruro di sodio (Figura 5.7) contiene uno ione
sodio centrale piu 12(%) ioni sodio lungo gli spigoli. I centri delle facce con-
tengono 6(12) ioni cloruro, e agli angoli del cubo troviamo altri 8 (%) ioni clo-
ruro. Di conseguenza la cella elementare di cloruro di sodio contiene quat-
tro unita di formula. La lunghezza del lato del cubo ¢ la somma di due rag-
¢gi di anioni e di due raggi di cationi (si noti che gli anioni sono a contatto
tra loro all’interno della faccia del cubo solo nel caso limite dell’esatto rap-
porto tra i raggi).

E possibile osservare un impaccamento ottaedrico anche per composti
con stechiometrie diverse da quella 1:1. L’esempio classico & quello dell’os-
sido di titanio(IV), TiO, (nella forma del minerale rutilo). Per comprendere
la struttura del cristallo, la cosa pill semplice ¢ visualizzare gli ioni tita-
nio(IV) ai nodi di un reticolo cubico a corpo centrato distorto (benché i ca-
tioni siano molto piu piccoli degli anioni ossido), con gli ioni ossido che oc-
cupano gli interstizi (Figura 5.8).
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FIGURA 5.7 Cella ele-
mentare del cloruro di so-
dio. [Adattata da G. Ray-
ner-Canham et al., Chemi-
stry: A Second Course (Don
Mills, ON, Canada: Addi-
son-Wesley, 1989), p. 71]

o Tit*

FIGURA 5.8 Struttura
dell’'ossido di titanio(lV).
[Adattata da A F Wells,
Structural Inorganic Chemi-
stry, 5th ed. (New York:
Oxford University Press,
1984), p. 247].
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