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Prefazione

Questo testo vorrebbe essere uno strumento utile per I'apprendimento della
termodinamica. L’argomento principale & quello delle relazioni tra le derivate parziali
di grandezze termodinamiche. Le variabili di stato dei sistemi presi in considerazione
sono la pressione, il volume e la temperatura.

Non si discutera delle regole mnemoniche per ricavare, in modo relativamente
semplice, le relazioni di Maxwell. Secondo ’autore del presente testo, & didatticamente
piu istruttivo ricordare il differenziale dell’energia interna e le definizioni di entalpia,
energia libera ed entalpia libera e dedurre di conseguenza ogni altra relazione.

I problemi sono interamente svolti e in alcuni casi commentati. Nel testo
compaiono derivate parziali facili da ricavare, come (U/0T)y, e altre molto
complesse, come (0G/0H)g. L'uso degli jacobiani permetterebbe di semplificare il
meccanismo di risoluzione. Tuttavia, si & preferito, per finalita didattiche, risolvere i
problemi con un approccio, certamente piu lungo e pesante, di scomposizione e
ricomposizione delle formule, mediante alcune poche regole dell’analisi matematica.

Milano, 4 dicembre 2024
Massimiliano Bestetti

Politecnico di Milano
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VI

Simboli

MM

Costante dei gas
Temperatura assoluta
Volume

Pressione

Moli

Coefficiente di dilatazione termica a composizione costante

Coefficiente di comprimibilita isobara a composizione costante

Coefficiente di comprimibilita a entropia costante
Coefficiente termico della pressione a volume costante
Rapporto delle capacita termiche o rapporto isoentropico
Funzione o rapporto di Griineisen

Capacita termica e calore specifico a pressione costante
Capacita termica e calore specifico a volume costante
Lavoro

Calore

Energia interna

Entalpia

Entropia

Energia libera

Entalpia libera

Coefficienti dell’equazione di stato (per es. van der Waals)
Volume molare (V)

Densita

Massa molare

! In questo testo le grandezze molari sono indicate con la lettera minuscola.
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Elenco delle formule

Per semplificare la lettura del testo, di seguito sono elencati i risultati dei problemi del

capitolo 3. Il numero identifica il problema.
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19 (a_V) 20 Equazione di stato 21 Formula di
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93 (6H) 9 (OU) 30 (6U>
ap/, oT/, op/,
21 U . 0%U 33 [6 (au) ]
052 v avz s as\av/g




Relazioni tra derivate parziali di grandezze termodinamiche

IX

902G\ [9%*F 902G 9zH\ 1t 0%G 9%F

o \ap2) \avz) | <a 2) [(a 2)] 36 1\572) ©\ar2

P/ T p™ /) I\OP" /¢ p v

37 (65) 38 05 39 (6_5)
v/, (W)T ap/,,

20 (65) " (OF) 12 (OF)
op/ ap/, v/,

43 Vedi testo 44 Vedi testo 45 Vedi testo

as 0H

46 Equazioni TdS 47 (—) 48 (—)

ap/,, as/y
0H acy ac,

49 (—) 50 (—) 51 =
av/y v )r ap ),
0C,

52 E 53 Vedi testo 54 Vedi testo

T
oT op
55 Vedi testo 56 (—) 57 (—)
ap/ v/
as as

58 Griineisen 59 (—) 60 (—)

au/r ap/y,

61 aS 62 (GT) 63 (6H)
(ﬁ)u ap H v 14
oT oT 0H

N
ap/, ov/y 0G/g
i} i)

67 (—p) 68 (—p) 69 Vedi testo
ou/y avly




Massimiliano Bestetti

. aT 0H
70 Vedi testo 71 (—) 72 (—)
av U oT 1’4
23 (6V> 2 (OU) - (OG)
ap H a5/, aT/y
aT . 0H
76 (—) 77 Vedi testo 78 (—)
aV S aV S
B G (OF)
79 = 80 —=— 81 -
B = Bsy B Cy v/,
89 (aF) 83 (6H> a4 (OU)
0H 74 aG U av H
as .
85 (—) 86 Equazioni dU 87 Vedi testo
0H/p
H 1
88 Vedi testo 89 Vedi testo 90 (0 —/0 —)
S S/p
. . ou
91 Vedi testo 92 Vedi testo 93 (—)
aT /g
o4 (6U> o5 (OU) 06 (aF)
v/, ap/ aT/p
o7 (66) 0 (O_H) 0 (OH) (OU)
oT/y ap/ a6 TSe OF ) s
JoF
100 (—)




Capitolo 1. Elementi di analisi matematica sull’uso

delle derivate parziali in termodinamica

INTRODUZIONE

In figura 1 & rappresentata la proiezione nel piano pressione temperatura del
diagramma di stato dell’acqua. Si consideri in particolare I’energia interna U, anche
se il ragionamento che seguira vale anche per le altre funzioni di stato H, S, F e G. Ci
proponiamo di calcolare la variazione di energia interna AU dell’acqua che passa dallo
stato 1 allo stato 2. L’energia interna & una funzione di stato e pertanto possiamo
scegliere un cammino di trasformazione, detto anche cammino o percorso di

integrazione, qualsivoglia che porti il sistema da 1 a 2.

Figura 1. Diagramma di stato p — T dell’acqua e cammini di trasformazione.

In figura 1 sono tracciati due cammini di trasformazione, 1B2 e 1C2. Lungo il primo,
il ghiaccio subisce una compressione isoterma da 1 fino a B e poi un aumento di
temperatura, a pressione costante, da B fino a 2; lungo il tratto isobaro I’acqua subisce

un passaggio di stato in f, da solido a liquido.
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Si ha
UQR)-UM) =[U@) - U{,D]+ AU + U, - UB]+[UB) —Uu)]

in cui AUSTL(f) rappresenta il contributo alla variazione totale dell’energia interna

dovuto al passaggio di stato.

Il secondo cammino di trasformazione é composto da un tratto isobaro da 1 a s, un
passaggio di stato in s da solido a gas, e da un tratto isobaro che porta il sistema fino
a C; la seconda parte della trasformazione ¢ una compressione isoterma da C fino a 2,
lungo la quale c’¢ un passaggio di stato in ¢ dallo stato gassoso a quello liquido. In

questo caso

U2)-U@) =[U@)-U(c,L)] + AU () + [U(c, 6G) — U(O)]
+[U(C) = U(s,G)] + AUS™(s) + [U(s,S) — U(1)]

I due percorsi computazionali danno lo stesso risultato.

Ogni singolo contributo si calcola per integrazione del differenziale dell’energia
interna, funzione della temperatura e della pressione. In alternativa, i vari termici si
possono calcolare in base al primo principio AU = Q + W e quindi dal calore e dal
lavoro scambiati tra il sistema e I’'ambiente; questo secondo modo di procedere pud
risultare piu semplice per alcuni tipi di trasformazione a cui sono sottoposte

determinati materiali.

Per esempio, si consideri la trasformazione che porta il ghiaccio prima da 1 a B e poi

da B a f (rimanendo nello stato solido). Si ha

Ui, -u@ =[U{,S)-Uu®B]+[UB) -U)]

U(B)—U(l)szz (Z—U) dp

P1 T1

T

U(f,S)—U(B)=fo(g—¥)pz ar

copo del presente testo ¢ ricavare espressioni esplicite di alcune derivate parziali di
S del te test licite di al d t lid
grandezze termodinamiche, come per esempio quelle che compaiono nei due integrali

precedenti.
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Dimostreremo infatti che

(‘;—Z) — V(B ~Ta)

(OU) _c v
ar), 2P

in cui & e f§ sono rispettivamente il coefficiente di dilatazione termica e il coefficiente
di comprimibilita isoterma della fase ghiaccio, e C, la capacita termica a pressione
costante del ghiaccio. Queste grandezze dipendono dalla pressione e dalla temperatura

e cosi pure il volume.

Il primo integrale diventa cosi
D2
UEB) - U = [ T DIPBT) ~ T, p)dp
148
e il secondo
Ty
U(1.5) = UB) = [ [6o(Tp2) = paV (T paCT, p)ar

Ty

Il calcolo si completa conoscendo le formule di Cp, V,aef.
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EQUAZIONE DI STATO E RELAZIONE FONDAMENTALE

Nell’esempio precedente abbiamo visto che il calcolo della variazione di energia
interna dell’acqua, che passa dallo stato 1 solido a Ty, p; allo stato f solido a Tf, p,,
richiede la conoscenza dell’equazione di stato V = V(T,p) e della capacita termica a
pressione costante C, = f(T,p) del ghiaccio. Vedremo che i coefficienti a e f si

ricavano dall’equazione di stato.

In alternativa, il calcolo di U(f,S) —U(1) si potrebbe effettuare conoscendo
I'equazione di stato e la capacita termica a volume costante Cy, poiché quella a

pressione costante si puo ricavare con la formula

TV a?
B

Riepilogando, la conoscenza dell’equazione di stato @(p,V,T) = 0 di un sistema e

Cp=CV+

anche di una delle due capacita termiche, C, o Cy. & sufficiente per calcolare le
variazioni delle funzioni termodinamiche U, H, S, F e G di un sistema che passa da

uno stato a un altro, lungo un cammino di trasformazione qualsivoglia.

Qualora fossero presenti dei passaggi di stato lungo i cammini di integrazione, in
aggiunta, si renderebbe necessario conoscere i calori di trasformazione a pressione o a

volume costante.

Questo modo di procedere & proprio della termodinamica fenomenologica, ma esiste
anche un secondo approccio, detto assiomatico, che postula I’esistenza di un’equazione

del tipo
U=U(,V)

detta equazione o relazione fondamentale, la quale ha un contenuto informativo
superiore a quello della sola equazione di stato @(p,V,T) = 0. Infatti, dalla relazione

fondamentale possiamo ricavare sia I’equazione di stato che le capacita termiche.

Per i due principi della termodinamica

U = (au> ds + (au> dv = TdS — pdV
~\as/, ) “ T p

in cui

T=T(V)
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p=pSV)
Eliminando I’entropia tra queste ultime due, otteniamo I’equazione di stato
o, V,T) =0

Inoltre, la temperatura é funzione dell’entropia e del volume e pertanto I’entropia ¢, a

sua volta, funzione della temperatura e del volume S = S(T, V) sicché
U=U(SV)=UST,V),V)=U,V)

da cui ricaviamo la capacita termica a volume costante

C_(OU)
V= \ot/,

Una formula che lega I'energia interna alla temperatura e al volume
U=U(T,V)

¢ una relazione fondamentale? Verifichiamo se da questa possiamo risalire

all’equazione di stato e ad una delle due capacita termiche.

E immediato scrivere

C_(OU)
V=\or/,

ma per cio che concerne I’altra derivata, usando la formula Helmholtz, abbiamo

57), = ()
v/, aTT/),

Si tratta di un’equazione differenziale

(59,5, 15

il cui integrale &

T T?

P_ (LY i e vy + 0

in cui @(V) & una funzione incognita del volume. Non otteniamo quindi I’equazione di

stato del sistema. In altre parole, conoscendo U(T,V) non possiamo ricavare U(S, V).
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COEFFICIENTI DELL’EQUAZIONE DI STATO

Conoscendo I’equazione di stato si possono ricavare i seguenti coefficienti (1)

Coefficiente di temperatura del volume a

] dil i ca di 1 (6V> 1 (617)
tant t t a=—(—) =2(=
pressione costante (dilatazione termica di v\ar), = v\ar),
volume)
Coefficiente di temperatura della lunghezza a 1= 1 (aL)
pressione costante (dilatazione termica lineare) T L\aT P
Coefficiente di pressione del vo?ur.r;)e.l. é\l ; 1 (OV) 1 (017)
t t t = ——|— = —— —
.tempera ura costante (comprimibilita v\ap), w\ap),
isoterma)
Coefficiente di pressione del volume a entropia _ _l(a_V> _ _1(6_17)
costante (comprimibilita isoentropica) s V\dp/, v\dp/
Coefficiente di temperatura della pressione a 1 (ap>
volume costante = p\dT/y

11 coefficienti di dilatazione isobara, quello di comprimibilita isoterma e le capacita termiche

sono dette funzioni risposta. Le capacita termiche sono anche chiamate coefficienti del calore.
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Per i materiali isotropi vale la relazione @ = 34, infatti

_1(6V) _(aan) _(dInL? _31(6L) _ 3
“=y\er),”Cor ),"\"ar ) ~°1L\or/,
14

Si chiama modulo di compressibilita (o modulo di comprimibilita, modulo di massa) a

temperatura costante la grandezza

(),

e modulo di compressibilita a entropia costante la grandezza

K. = V(ap) _1
s awVls PBs
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POTENZIALI TERMODINAMICI
L’energia interna U, I'entalpia H, I’energia libera F e I’entalpia libera G sono funzioni
di stato.

Sia f una funzione di due variabili x e y, continua, assieme alle sue derivate prime e
seconde. Il teorema di H.A. Schwarz garantisce che le derivate seconde miste non

dipendono dall’ordine cui si effettua la derivazione

(e [5(5).)

In base a questo teorema possiamo ricavare alcune importanti relazioni tra le derivate
parziali delle grandezze termodinamiche che compaiono nei differenziali delle funzioni

di stato. Le formule in tabella 1 sono comunemente chiamate relazioni di Maxwell.

Tabella 1. Relazioni tra le derivate parziali delle funzioni di stato.

Potenziale . . . .
. . Differenziale Relazione di Maxwell
termodinamico
U dU = TdS — pdV (aT) = (0p>
- p av)s~ \as),
p s 4 (OT) _ (OV)
H=U+pV H =TdS +Vdp aPS_ 35/,
F=U—Ts dF = —SdT — pdV (as) - (ap>
- - P ).~ \atr),
G S dG Sd d (05) = (aV)
=H-T = —=5dT + Vdp apT— ot/

A queste si aggiungono le relazioni ottenute invertendo il rapporto

52, = (),
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