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Prefazione 

Questo testo vorrebbe essere uno strumento utile per l’apprendimento della 
termodinamica. L’argomento principale è quello delle relazioni tra le derivate parziali 
di grandezze termodinamiche. Le variabili di stato dei sistemi presi in considerazione 
sono la pressione, il volume e la temperatura. 

Non si discuterà delle regole mnemoniche per ricavare, in modo relativamente 
semplice, le relazioni di Maxwell. Secondo l’autore del presente testo, è didatticamente 
più istruttivo ricordare il differenziale dell’energia interna e le definizioni di entalpia, 
energia libera ed entalpia libera e dedurre di conseguenza ogni altra relazione. 

I problemi sono interamente svolti e in alcuni casi commentati. Nel testo 
compaiono derivate parziali facili da ricavare, come ( ) , e altre molto 
complesse, come ( ) . L’uso degli jacobiani permetterebbe di semplificare il 
meccanismo di risoluzione. Tuttavia, si è preferito, per finalità didattiche, risolvere i 
problemi con un approccio, certamente più lungo e pesante, di scomposizione e 
ricomposizione delle formule, mediante alcune poche regole dell’analisi matematica. 

Milano, 4 dicembre 2024 

Massimiliano Bestetti 

Politecnico di Milano 
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Simboli 

Costante dei gas 

Temperatura assoluta 

Volume

Pressione

 Moli

,  Coefficiente di dilatazione termica a composizione costante

 Coefficiente di comprimibilità isobara a composizione costante

 Coefficiente di comprimibilità a entropia costante

 Coefficiente termico della pressione a volume costante

Rapporto delle capacità termiche o rapporto isoentropico

Funzione o rapporto di Grüneisen

 e  Capacità termica e calore specifico a pressione costante 

 e  Capacità termica e calore specifico a volume costante

 Lavoro

 Calore

 Energia interna

Entalpia

Entropia 

Energia libera

Entalpia libera

, Coefficienti dell’equazione di stato (per es. van der Waals)

Volume molare (1)

Densità

Massa molare

1 In questo testo le grandezze molari sono indicate con la lettera minuscola. 
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Per semplificare la lettura del testo, di seguito sono elencati i risultati dei problemi del 
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Capitolo 1.    Elementi di analisi matematica sull’uso 
delle derivate parziali in termodinamica 

INTRODUZIONE 

In figura 1 è rappresentata la proiezione nel piano pressione temperatura del 
diagramma di stato dell’acqua. Si consideri in particolare l’energia interna , anche 
se il ragionamento che seguirà vale anche per le altre funzioni di stato , ,  e . Ci 
proponiamo di calcolare la variazione di energia interna  dell’acqua che passa dallo 
stato 1 allo stato 2. L’energia interna è una funzione di stato e pertanto possiamo 
scegliere un cammino di trasformazione, detto anche cammino o percorso di 
integrazione, qualsivoglia che porti il sistema da 1 a 2.  

 

Figura 1. Diagramma di stato   dell’acqua e cammini di trasformazione. 

In figura 1 sono tracciati due cammini di trasformazione, 1B2 e 1C2. Lungo il primo, 
il ghiaccio subisce una compressione isoterma da 1 fino a B e poi un aumento di 
temperatura, a pressione costante, da B fino a 2; lungo il tratto isobaro l’acqua subisce 
un passaggio di stato in f, da solido a liquido.  
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Si ha 

(2) (1) = [ (2) ( , )] + ( ) + [ ( , ) ( )] + [ ( ) (1)] 

in cui ( ) rappresenta il contributo alla variazione totale dell’energia interna 
dovuto al passaggio di stato. 

Il secondo cammino di trasformazione è composto da un tratto isobaro da 1 a s, un 
passaggio di stato in s da solido a gas, e da un tratto isobaro che porta il sistema fino 
a C; la seconda parte della trasformazione è una compressione isoterma da C fino a 2, 
lungo la quale c’è un passaggio di stato in c dallo stato gassoso a quello liquido. In 
questo caso 

(2) (1) = [ (2) ( , )] + ( ) + [ ( , ) ( )]

+ [ ( ) ( , )] + ( ) + [ ( , ) (1)] 

I due percorsi computazionali danno lo stesso risultato. 

Ogni singolo contributo si calcola per integrazione del differenziale dell’energia 
interna, funzione della temperatura e della pressione. In alternativa, i vari termici si 
possono calcolare in base al primo principio = +  e quindi dal calore e dal 
lavoro scambiati tra il sistema e l’ambiente; questo secondo modo di procedere può 
risultare più semplice per alcuni tipi di trasformazione a cui sono sottoposte 
determinati materiali. 

Per esempio, si consideri la trasformazione che porta il ghiaccio prima da 1 a B e poi 
da B a f (rimanendo nello stato solido). Si ha 

( , ) (1) = [ ( , ) ( )] + [ ( ) (1)] 

in cui

( ) (1) =

e

( , ) ( ) =

Scopo del presente testo è ricavare espressioni esplicite di alcune derivate parziali di 
grandezze termodinamiche, come per esempio quelle che compaiono nei due integrali 
precedenti.  
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Dimostreremo infatti che 

= ( ) 

e

=  

in cui  e  sono rispettivamente il coefficiente di dilatazione termica e il coefficiente 
di comprimibilità isoterma della fase ghiaccio, e  la capacità termica a pressione 
costante del ghiaccio. Queste grandezze dipendono dalla pressione e dalla temperatura 
e così pure il volume. 

Il primo integrale diventa così 

( ) (1) = { ( , )[ ( , ) ( , )]}  

e il secondo 

( , ) ( ) = ( , ) ( , ) ( , )  

Il calcolo si completa conoscendo le formule di , ,  e . 
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EQUAZIONE DI STATO E RELAZIONE FONDAMENTALE 

Nell’esempio precedente abbiamo visto che il calcolo della variazione di energia 
interna dell’acqua, che passa dallo stato 1 solido a , allo stato f solido a , ,  
richiede la conoscenza dell’equazione di stato = ( , ) e della capacità termica a 
pressione costante = ( , )  del ghiaccio. Vedremo che i coefficienti  e  si 
ricavano dall’equazione di stato. 

In alternativa, il calcolo di ( , ) (1) si potrebbe effettuare conoscendo 
l’equazione di stato e la capacità termica a volume costante , poiché quella a 
pressione costante si può ricavare con la formula  

= +  

Riepilogando, la conoscenza dell’equazione di stato ( , , ) = 0 di un sistema e
anche di una delle due capacità termiche,  o . è sufficiente per calcolare le 
variazioni delle funzioni termodinamiche , , ,  e  di un sistema che passa da 
uno stato a un altro, lungo un cammino di trasformazione qualsivoglia. 

Qualora fossero presenti dei passaggi di stato lungo i cammini di integrazione, in 
aggiunta, si renderebbe necessario conoscere i calori di trasformazione a pressione o a 
volume costante. 

Questo modo di procedere è proprio della termodinamica fenomenologica, ma esiste 
anche un secondo approccio, detto assiomatico, che postula l’esistenza di un’equazione 
del tipo  

= ( , ) 

detta equazione o relazione fondamentale, la quale ha un contenuto informativo 
superiore a quello della sola equazione di stato ( , , ) = 0. Infatti, dalla relazione 
fondamentale possiamo ricavare sia l’equazione di stato che le capacità termiche.  

Per i due principi della termodinamica

= + =

in cui 

= ( , ) 

e 
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= ( , ) 

Eliminando l’entropia tra queste ultime due, otteniamo l’equazione di stato  

( , , ) = 0 

Inoltre, la temperatura è funzione dell’entropia e del volume e pertanto l’entropia è, a 
sua volta, funzione della temperatura e del volume = ( , ) sicché 

= ( , ) = ( ( , ), ) = ( , ) 

da cui ricaviamo la capacità termica a volume costante

=  

Una formula che lega l’energia interna alla temperatura e al volume 

= ( , ) 

è una relazione fondamentale? Verifichiamo se da questa possiamo risalire 
all’equazione di stato e ad una delle due capacità termiche.  

È immediato scrivere 

=  

ma per ciò che concerne l’altra derivata, usando la formula Helmholtz, abbiamo

=

Si tratta di un’equazione differenziale 

=
1

=
( , )

il cui integrale è

=
( , )

= ( , ) + ( )

in cui ( ) è una funzione incognita del volume. Non otteniamo quindi l’equazione di 
stato del sistema. In altre parole, conoscendo ( , ) non possiamo ricavare ( , ). 
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COEFFICIENTI DELL’EQUAZIONE DI STATO 

Conoscendo l’equazione di stato si possono ricavare i seguenti coefficienti (1) 

Coefficiente di temperatura del volume a 
pressione costante (dilatazione termica di 
volume)

=
1

=
1

Coefficiente di temperatura della lunghezza a 
pressione costante (dilatazione termica lineare) 

=
1

Coefficiente di pressione del volume a 
temperatura costante (comprimibilità 
isoterma) 

=
1

=
1

Coefficiente di pressione del volume a entropia 
costante (comprimibilità isoentropica) 

=
1

=
1

Coefficiente di temperatura della pressione a 
volume costante 

=
1

1 Il coefficienti di dilatazione isobara, quello di comprimibilità isoterma e le capacità termiche 
sono dette funzioni risposta. Le capacità termiche sono anche chiamate coefficienti del calore. 
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Per i materiali isotropi vale la relazione = 3 , infatti  

=
1

=
ln

=
ln

= 3
1

= 3  

 

Si chiama modulo di compressibilità (o modulo di comprimibilità, modulo di massa) a 
temperatura costante la grandezza 

= =
1

 

e modulo di compressibilità a entropia costante la grandezza

= =
1

 

  



8 Massimiliano Bestetti – Relazioni tra derivate parziali di grandezze termodinamiche 

POTENZIALI TERMODINAMICI 

L’energia interna , l’entalpia , l’energia libera  e l’entalpia libera  sono funzioni 
di stato.  

Sia  una funzione di due variabili  e , continua, assieme alle sue derivate prime e 
seconde. Il teorema di H.A. Schwarz garantisce che le derivate seconde miste non 
dipendono dall’ordine cui si effettua la derivazione 

=  

In base a questo teorema possiamo ricavare alcune importanti relazioni tra le derivate 
parziali delle grandezze termodinamiche che compaiono nei differenziali delle funzioni 
di stato. Le formule in tabella 1 sono comunemente chiamate relazioni di Maxwell.  

Tabella 1. Relazioni tra le derivate parziali delle funzioni di stato. 

Potenziale 
termodinamico

Differenziale Relazione di Maxwell 

 =  =  

= +  = +  =  

= = =

= = + =

A queste si aggiungono le relazioni ottenute invertendo il rapporto

= 1






